Building the Trans-Asia Highway... proven and innovative solutions for the region's mobility needs

Cost Effective Strategies to Raise Awareness to Vulnerable Users and Increase Highway Safety in Hispanic Countries

Dr. Benjamín Colucci, benjamin.colucci1@upr.edu

Director, Puerto Rico LTAP Center
Spokesperson, Decade of Action for Road Safety in Puerto Rico and Abertis Chair
November 19, 2014

Good Morning!

Introduction

Commonwealth of Puerto Rico

- Island: 3,500 mi² (100 mi x 35 mi)
- Population: 3.8 millions (2010 US Census)
- Unincorporated territory USA
- Tourism nearly 7% of the islands' GNP

Road Network

- 26,866 centerline kms
- Accessibility and mobility to 95% of road users and freight
- Absence of rail network contributes to premature deterioration of the network

Road Safety: A Balance of Interest

National Strategic Road Safety Plans, a Good Starting Point

The 5 E's: Fundamental Principles of Roadway Safety to all Road Users

OBJECTIVES

 To increase road user awareness and contribute to the safer road users pillar of the worldwide Decade of Action for Road Safety initiative

World Health Organization (WHO)

- 1.23 million road traffic deaths
- 50% of the fatalities are associated with vulnerable road users
- 7% of the world's population (28 countries) have comprehensive laws on five key risk factors

Source: http://www.who.int/gho/road_safety/en/

Vulnerable Road Users (VRU)

- Term applied to those users at most risk in traffic.
- Unprotected by an outside shield, namely,
 - Pedestrians
 - Children
 - Elderly People
 - Disabled Persons
 - o Two-wheelers
 - Motorized
 - Non-motorized
 - New drivers
 - o Animals
- VRU from developing countries are at a higher risk
- They are at greater risk of injury in any collision against a vehicle

Source: http://safety.fhwa.dot.gov/ped_bike/docs/oecd_safety.pdf

VRU Fatalities Statistics in India and Thailand

- In Delhi, India → 80% of fatalities are associated with VRU
- In Thailand
 →70% of the
 road fatalities
 relates
 motorcycles

Source: http://www.grsproadsafety.org/

Vulnerable Road Users (VRU)

Non-motorized vehicles³

Disabled Persons⁷

Elderly People⁶

1. http://www.who.int/violence_injury_prevention/publications/road_traffic/make_walking_safe/en/; 2. http://observer.com/2011/06/bicycle-backlash-over-says-uh-the-journal/; 3. http://www.thedailystar.net/rickshaws-clog-streets-10655; 4. http://kawikaguillermo.com/2008/08/; 5. http://news.bbc.co.uk/cbbcnews/hi/newsid_8190000/newsid_8191300/8191304.stm; 6. http://raynaleigh.wordpress.com/sgms-courses/english-20/random-assignments/hold-hands-more/; 7. http://www.shutterstock.com/; 8. http://tribune.com.pk/story/7392/

We can save millions of lives

Crash Trends in Puerto Rico

Fatality Crash Trend in Roads in Puerto Rico: 2013

Crashes: 236,107Injuries: 31,957

Fatalities: 344

Pedestrians: 31% of total fatalities

Alcohol and controlled substances: 2,137 (39.1%)

Motorcyclists: 23% of total fatalities

Human factor (drivers and pedestrians): 90% a 93%

Geometric and operational deficiencies: 2% a 3%

Vulnerable Road Users (VRU) Can Suddenly Appear Anytime of the Day

Fatality and Injury Crash Trends: Puerto Rico Highway Network

Source: SHSP-PR 2014-2018, ACAA 2007-2013 and FARS 2007-2013

Contributing Circumstances to Fatal Crashes Commonwealth of Puerto Rico: 2007-2009, 2012

Source: Critical Analysis Reporting Environment (CARE)

Characteristics of fatal crashes in Puerto Rico: 2008-2013

Parameters	2008	2009	2010	2011	2012	2013
Registered Vehicles	3,129,561	3,026,815	3,020,455	3,084,543	4,500,941	2,842,420
Licensed Drivers ¹	2,017,055	2,628,207	3,102,941	3,619,499	2,991,904	2,100,076
Roadway Miles²	16,576	16,680	16,693	16,694	17,387	Not Available
VMT (Million) ³	194.3	190.1	185.7	183.9	18,108	Not Available
Total Crashes ⁴	287,798	210,721	202,335	190,170	232,012	236,107
Total Injuries ⁵	39,100	38,748	37,396	35,592	35,219	31,957
Fatal Crashes	386	343	330	343	354	314
Total Fatalities	406	365	340	361	366	344

¹ PRDTPW-Drivers Services Directory; ²PRHTA-Highway Systems Office; ³PRDTPW-Accident Analysis Office; ⁴ACAA; ⁵Puerto Rico Police.

Source: Puerto Rico Strategic Highway Safety Plan 2014-2018

Comparison of Fatal Crashes between Puerto Rico and United States of America

Parameters	United States of America	North Carolina, EE UU	Wisconsin, EE UU	Puerto Rico
Total Fatalities	33,808	894	561	365
Ratio (HMVMT)	1.14	1.82	1.18	1.92
Off-Road	18,087 (53%)	543 (61%)	319 (57%)	101 (28%)
Intersection	7,043 (21%)	146 (16%)	125 (22%)	42 (12%)
Pedestrians	4,092 (12%)	89 (10%)	38 (7%)	109 (30%)
Velocity	10,591 (31%)	337 (38%)	203 (36%)	156 (43%)
Alcohol	10,848 (32%)	377 (42%)	213 (38%)	109 (30%)
Rural Reason (HMVMT)	1.98	3.62	1.38	15.08
Urban Reason (HMVMT)	0.72	0.06	0.59	0.94

Total Fatal Crashes and Pedestrian Fatalities: Puerto Rico vs. United States of America

	Puerto Rico			United States of America			
Year	Pedes		trians	Total	Pedestrians		
	Total Fatalities	Fatalities	Percentage (%)	Total Fatalities	Fatalities	Percentage (%)	
2002	519	177	34	43,005	4,851	11	
2003	495	150	30	42,884	4,774	11	
2004	495	162	33	42,836	4,675	11	
2005	457	134	29	43,510	4,892	11	
2006	508	140	28	42,708	4,795	11	
2007	452	145	32	41,259	4,699	11	
2008	406	130	32	37,423	4,414	12	
2009	365	109	30	33,883	4,092	12	
2010	340	101	30	32,885	4,280	13	
2011	361	111	31	-	-	-	
Total	4,398	1,359	31%*	360,393	41,472	11%*	

^{*}The average fatalities associated with pedestrians in Puerto Rico within the last 10 years represents 31% of the total fatal crashes vs. 11% in the United States of America (USA)

Highway crashes fatalities in Puerto Rico classified by Vulnerable Road Users (VRU)

Comparison of Fatalities, Alcohol and Pedestrians (VRU) Commonwealth of Puerto Rico

Source: Traffic Safety Commission, 2013

Pedestrian (VRU) Fatalities/100,000 habitants

Source: NHTSA, 2010

Pedestrian (VRU) Fatalities Associated with Alcohol Consumption per Day of the Week

Source: Traffic Safety Commission, 2012

Pedestrian (VRU) Fatalities Associated with Alcohol Consumption per day period

Source: Traffic Safety Commission, 2012

Fatalities and Fatality Rate per 100 Million Vehicle Miles Traveled by Year

Source: 1963–1974: National Center for Health Statistics, HEW, and State Accident Summaries (Adjusted to 30-Day Traffic Deaths by NHTSA); FARS 1975–2011 (Final), 2012 Annual Report File (ARF); Vehicle Miles Traveled (VMT): Federal Highway Administration.

Fatality and Injury Rates/100 Million VMT

Rate	2011	2012	Change	%Change
Fatalities	1.10	1.14	0.04	3.6%
Injuries	75	80	5	6.7%

Comparison of VRU Fatalities in the Commonwealth of Puerto Rico: 2003-2012

Representative Scenarios of Urban Intersections and Rural Highways for VRU

VRU Urban Intersection

VRU Urban Signalized Intersection

VRU under adverse weather condition rural section

Ineffective Refuge Island for Motorcycles

Near miss secondary crash for VRU at Urban Intersection

Lack of Adequate Traffic Control Devices (TCD) and Enforcement at Urban Intersection, VRU at High Risk

Pedestrian Crash Simulation Studies

Real Motor vehicle-Pedestrian crash at a Rural Freeway on a Disabled Vehicle Center lane

Cyclist Crash Simulation Studies

Rear and Side View Motorcycle-Vehicle Crash Simulation Studies

Reckless Motorcycle Driver Behavior

Rear-ended motorcycle crash in an idle motor vehicle in the center lane in a freeway

Skidding related crash under rainy conditions

Innovative Technologies to Improve Safety VRU

Fully-electric and fully-enclosed self-balancing motorcycle

Fully-electric and fully-enclosed self-balancing motorcycle

Crash Avoidance Technologies

Front Crash Prevention

- Uses various types of sensors, such as
 - o Cameras
 - o Radar or
 - Light Detection and Ranging (LIDAR)
- Detects when the vehicle is getting too close to one in front of it.
- Most systems issue a warning and precharge the brakes to maximize their effect if the driver responds by braking.
- Many systems brake the vehicle autonomously if the driver doesn't respond.
- In some cases, automatic braking is activated without a preliminary warning.

Adaptive Cruise Control

- The driver sets the desired speed.
- The forward-mounted sensors track the distance to a lead vehicle, and the engine and brakes are used to maintain a safe gap if traffic slows.
- As traffic speeds up again, the vehicle accelerates to maintain the preset cruise speed.

Lane Departure Warning and Prevention

- Uses cameras to track the vehicle's position within the lane, alerting the driver if the vehicle is in danger of inadvertently straying across lane markings.
- Some systems use haptic warnings, such as steering wheel or seat vibration, while others use audible and/or visual warnings.
- Some systems cause the vehicle to actively resist moving out of the lane or help direct the vehicle back into the lane through light braking or minor steering adjustments.

Blind Spot Detection

- Uses sensors to monitor the side of the vehicle for vehicles approaching blind spots.
- In many systems, a visual alert appears on or near the sideview mirrors if a vehicle is detected.
- An audible alert may activate if the driver signals a turn and there is a vehicle in the blind spot.
- Some systems also may activate the brake or steering controls to keep the vehicle in its lane.

Park Assist and Backover Prevention

- Rear object detection systems use cameras and sensors to help the driver look for objects behind the vehicle when backing up.
- Rearview cameras display what is behind the vehicle.
- Systems that use radar or ultrasonic sensors, along with some camera systems, warn the driver if there are objects in the way when the vehicle is in reverse.
- Some systems automatically apply the brakes to keep the vehicle from backing into or over an object.
- A cross-traffic alert system detects approaching vehicles that may cross the path of a backing vehicle, warns the driver, and may automatically brake to prevent a collision.

Adaptive Headlights

- Help drivers see better on dark, curved roads.
- The headlights pivot in the direction of travel based on steering wheel movement and sometimes the vehicle's speed to illuminate the road ahead.

Conclusion

- Innovative Technologies namely, xx, vv, tt, have the potential to reduce severity and save to vulnerable users.
- Effective Enforcement is required to establish controls at intersections in urban settings
- Educational Campaigns for the benefits of all road users in terms of sharing the road and improving efficiency in Highway Operations is essential to establish a safety culture in developing countries and world wide.
- All together we can make the difference in reducing to vulnerable road users.

Reflection

United we can address regional needs in reducing fatalities in our highway network

Thank you for the opportunity

