LTAP Transportation Technology Transfer Center

Dr. Benjamín Colucci, Director benjamín.colucci1@upr.edu

Spokesperson Decade of Action for Road Safety 2011-2020

DESIGN AND LOCATION OF ROADSIDE BARRIERS

Traffic Safety Barrier System

- Basic section
- 2. Terminal

- 3. Transition section
- 4. Bridge Railing

Barrier Layout

General Rules of Longitudinal Guardrail Location

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

■ Minimum lateral distance between rail and hazard → 2 feet (0.6 m)

- Longitudinal distance between barriers shielding isolated hazards (utility poles each 150 feet)
 - Avoid installing individual guardrails with gaps less than 200 feet

Barrier-to-Obstacle Distance

Terrain Effects

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

 Slopes steeper than 1V:10H may cause vehicle to go over or impact barrier too low

Roadside Slope Before Barrier

Placement Variables

- Lateral Extent of the Area of Concern L_A: distance from the edge of the traveled way to the far side of the fixed object or to the outside of the clear zone
- Lateral Extent of the Runout Length L_R: theoretical distance needed for a vehicle that has left the roadway to come to stop
- □ Tangent length from the Area of Concern L₁: selected by the designer (zero if no flare)

Design Factors: L_A

Design Factors: L_C

Length of Need, L_R

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

Total length
 of a roadside
 barrier
 needed to
 shield a
 hazard

Design Factors: L_R

Suggested Runout Lengths

		Traffic Volume (ADT)							
		Over 6000 vpd		2000 – 6000 vpd		800 – 2000 vpd		Under 800 vpd	
Design Speed		Runout Length		Runout Length		Runout Length		Runout Length	
		L_R		L_R		L_R		L_R	
km/h	[mph]	m	[ft]	m	[ft]	m	[ft]	m	[ft]
110	[70]	145	[475]	135	[445]	120	[395]	110	[360]
100	[60]	130	[425]	120	[400]	105	[345]	100	[330]
90	[55]	110	[360]	105	[345]	95	[315]	85	[280]
80	[50]	100	[330]	90	[300]	80	[260]	75	[245]
70	[45]	80	[260]	75	[245]	65	[215]	60	[200]
60	[40]	70	[230]	60	[200]	55	[180]	50	[165]
50	[30]	50	[165]	50	[165]	45	[150]	40	[130]

Design Factors: L₃

Design Factors: L₂

Lateral Offset L₂

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

- Uniform clearance
- Barrier-to-obstruction distance and barrier deflection must be considered
- Place as far from the traveled way as possible
- \square Shy Line Offset L_S (Table 5.5)

Distance from the edge of the traveled way, beyond which an object will not be perceived as an obstacle and the driver will react to it

Design Factors: L_S

Shy Line Offset, L_s

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

Design Speed (mph)

- 80
- 70
- 60
- 50
- 40
- 30

Shy Line Offset, L_s (feet)

- 12.0
- 10.0
- 8.0
- 6.5
- 5.0
- 3.5

Design Factors: L₁

Design Factors: b/a

Flare Rate

- Barrier is considered flared when it is not parallel to the edge of the roadway
- Pros
 - Locate the barrier farther from the roadway
 - Minimize driver's reaction to an obstacle
 - Reduce total length of rail needed
- Cons
 - The greater the flare rate, the higher the approach angle, the higher the severity
 - Vehicle can be redirected back to roadway

Suggested Flare Rates

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

R	1980-2014

Design	Speed	Flare Rate for Barrier Inside	Flare Rate for Barrier at or Beyond Shy Line		
km/h	[mph]	Shy Line	Α	В	
110	[70]	30:1	20:1	15:1	
100	[60]	26:1	18:1	14:1	
90	[55]	24:1	16:1	12:1	
80	[50]	21:1	14:1	11:1	
70	[45]	18:1	12:1	10:1	
60	[40]	16:1	10:1	8:1	
50	[30]	13:1	8:1	7: 1	

Notes:

A = Suggested maximum flare rate for rigid barrier system.

B = Suggested maximum flare rate for semi-rigid barrier system.

The MGS has been tested in accordance with NCHRP Report 350 TL-3 at 5:1 flare.

Flatter flare rates for the MGS installations also are acceptable. The MGS should be installed using the flare rates shown or flatter for semi-rigid barriers beyond the shy line when installed in rock formations.

Solving for X

Required Length of Need in Advance of the Area of Concern

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

$$X = \frac{L_A + (b \mid a)(L_1) - L_2}{b \mid a + (L_A)/(L_R)}$$

← With Flare Rate

Without Flare Rate →

$$X = \frac{L_A - L_2}{(L_A)/(L_R)}$$

- End treatment length is not included in calculation
- Adjust for nominal metal beams lengths: 3.8 or 7.6 m

Lateral Offset from the Edge of the Traveled Way

Barrier for Opposing Traffic

- Barrier beyond the appropriate clear zone LC no additional barrier or end treatment required
- Barrier within the appropriate clear zone LC, but area of concern LA is beyond it - no additional barrier required, but end treatment should be used
- 3. Area of concern LA extends well beyond the clear zone LC - shield only that portion which lies within clear zone by setting LA = LC

Barrier Layout for Opposing Traffic

MEDIAN BARRIER PLACEMENT RECOMMENDATIONS

Terrain Effects & Flare Rate

Terrain Effects: Curbs

- R
- Barrier face located within 9 in of curb's face prevents vehicle vaulting at 60 mph
- Top of rail at 27 in above the curb will make impacts at lower elevations than normal
- Add rubrail to minimize snagging
- Align faces of barrier and curb and use normal mounting height from curb bottom

Barriers on Sloped Medians

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

■ Most desirable median: 1H:10V slope

- Section I depressed median or with a ditch
- Section II stepped median or with separated traveled ways with significant differences in elevations
- □ Section III raised median or berms

Barrier Placement Section I

Barrier Placement Section II

Barrier Placement Section III

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

ILLUSTRATION 7

Split Median Layout

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

* Flare rate should not exceed suggested limits (Refer to Table 5.7)

Suggested Flare Rates

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

R	1980-2014

Design	Speed	Flare Rate for Barrier Inside	Flare Rate for Barrier at or Beyond Shy Line		
km/h	[mph]	Shy Line	A	В	
110	[70]	30:1	20:1	15:1	
100	[60]	26:1	18:1	14:1	
90	[55]	24:1	16:1	12:1	
80	[50]	21:1	14:1	11:1	
70	[45]	18:1	12:1	10:1	
60	[40]	16:1	10:1	8:1	
50	[30]	13:1	8:1	7 :1	

Notes:

A = Suggested maximum flare rate for rigid barrier system.

B = Suggested maximum flare rate for semi-rigid barrier system.

Same as longitudinal barriers

Shielding of Fixed Object on Median

Terminals for Median Barriers

- Open guardrail systems are less expensive, but require more length, increasing the potential for vehicles to hit it
- Crash cushions involves rigid barriers with cushions on each end, are effective but expensive
- Bullnose systems (closed guardrail envelopes) wrap the guardrail completely around the hazard, are the least expensive, but more dangerous of the three designs

Inadequate Median End Treatment

Bullnose Guardrail System

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

- Captures vehicle like a safety net
- Protect opening between side-by-side bridges
- Deflects vehicles parallel to the roadway

 Full-scale tests showed the system successfully captured the automobile, but the light truck plunged

through the guardrail

Bullnose Guardrail System

QUESTIONS, REVIEW AND EXAMPLE

Design the barrier installation for the bridge approach

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

- 1. Clear Zone Distance L_C (2011 RDG Table 3.1)
- Lateral Area of Concern L_A
- 3. Suggested Runout Length L_R (2011 RDG Table 5.10)
- 4. Tangent Length from the Area of Concern L_1
- 5. Shy Line (2011 RDG Table 5.7)
- 6. Lateral Offset L₂
- 7. Flare rate (RDG Table 5.9)
- 8. Length of need X
- Lateral Offset Y

Note: bridge transition segment length → 10-12 times the difference in lateral deflection between barriers

Approach Barrier Layout Variables

(2011 RDG Figure 5-39)

2011 RDG Table 3-1

U.S. Customary Units

Design		Foreslopes				Backslopes		
Speed (mph)	Design ADT	1V:6H or flatter	1V:5H to 1V:4H	1 V :3H	1V:3H	1V:5H to 1V:4H	1V:6H or flatter	
≤40	UNDER 750° 750–1500 1500–6000 OVER 6000	7–10 10–12 12–14 14–16	7 – 10 12–14 14–16 16–18	b b b	7–10 12–14 14–16 16–18	7–10 12–14 14–16 16–18	7–10 12–14 14–16 16–18	
45–50	UNDER 750° 750–1500 1500–6000 OVER 6000	10–12 14–16 16–18 20–22	12–14 16–20 20–26 24–28	b b b	8–10 10–12 12–14 14–16	8–10 12–14 14–16 18–20	10–12 14–16 16–18 20–22	
55	UNDER 750° 750–1500 1500–6000 OVER 6000	12–14 16–18 20–22 22–24	14–18 20–24 24–30 26–32²	6 6 6	8–10 10–12 14–16 16–18	10–12 14–16 16–18 20–22	10–12 16–18 20–22 22–24	
60	UNDER 750° 750–1500 1500–6000 OVER 6000	16-18 20-24 26-30 30-32"	20–24 26–32* 32–40* 36–44*	b b b	10–12 12–14 14–18 20–22	12-14 16-18 18-22 24-26	14–16 20–22 24–26 26–28	
65–70°	UNDER 750° 750–1500 1500–6000 OVER 6000	18–20 24–26 28–32" 30–34°	20–26 28–36° 34–42° 38–46°	b b b	10–12 12–16 16–20 22–24	14–16 18–20 22–24 26–30	14–16 20–22 26–28 28–30	

1. Clear Zone Distance Lc = 30 ft = Lateral area of concern L_A

Suggested Runout Lengths

	Runout Length (L _R) Given Traffic Volume (ADT) (ft)					
Design Speed (mph)	Over 10,000 veh/day	5,000 to 10,000 veh/day	1,000 to 5,000 veh/day	Under 1,000 veh/day		
80	470	430	380	330		
70	360	330	290	250		
60	300	250	210	200		
50	230	190	160	150		
40	160	130	110	100		
30	110	90	80	70		

Shy Line Offset L_S

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

Design Speed		Shy-Line Offset (L_s)		
km/h	[mph]	m	[ft]	
130	[80]	3.7	[12]	
120	[75]	3.2	[10]	
110	[70]	2.8	[9]	
100	[60]	2.4	[8]	
90	[55]	2.2	[7]	
80	[50]	2.0	[6.5]	
70	[45]	1.7	[6]	
60	[40]	1.4	[5]	
50	[30]	1.1	[4]	

(2011 RDG Table 5-7)

Suggested Flare Rates

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

R Zo

(2011 RDG Table 5-9)

Design	Speed	Flare Rate for Barrier Inside	Flare Rate for Barrier at or Beyond Shy Line		
km/h	[m ph]	Shy Line	A	В	
110	[70]	30:1	20:1	15:1	
100	[60]	2 6:1	18:1	14:1	
90	[55]	24:1	16:1	12:1	
80	[50]	21:1	14:1	1 1 :1	
70	[45]	18:1	12:1	10:1	
60	[40]	16:1	10:1	8:1	
50	[30]	13:1	8:1	7 :1	

Notes:

A = Suggested maximum flare rate for rigid barrier system.

B = Suggested maximum flare rate for semi-rigid barrier system.

The MGS has been tested in accordance with NCHRP Report 350 TL-3 at 5:1 flare.

Flatter flare rates for the MGS installations also are acceptable. The MGS should be installed using the flare rates shown or flatter for semi-rigid barriers beyond the shy line when installed in rock formations.

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

- 1. Clear Zone Distance $L_C = 30-34$ ft (2011 RDG Table 3-1)
- Lateral Area of Concern $L_A = L_C = 30$ ft (selected)
- 3. Suggested Runout Length $L_R = 475$ ft (2011 RDG Table 5-10)
- Tangent Length from the Area of Concern $L_1 = 25$ ft (selected as 7.2 m \rightarrow 2 guardrail elements)
- 5. Shy Line (2011 RDG Table 5-7) = 9.2 ft (shoulder)
- Lateral Offset $L_{2 \text{ right}} = 12 \text{ ft}$, Lateral Offset $L_{2 \text{ median}} = 8 \text{ ft}$
- 7. Flare rate (2011 RDG Table 5-9) = 15:1 (external), = 30:1 (median)

Note: bridge transition segment length → 10-12 times the difference in lateral deflection between barriers

Required Length of Need in Advance of the Area of Concern

$$X = \frac{L_A + (b \mid a)(L_1) - L_2}{b \mid a + (L_A)/(L_R)} = \frac{30 + (1/15)(25) - 12}{(1/15) + (30/475)} = 151.3 ft$$

$$X = \frac{L_A - L_2}{(L_A)/(L_R)} = \frac{30 - 12}{30/475} = 285 ft$$

- End treatment length is not included in calculation
- Adjust for nominal metal beams lengths: 3.8 or 7.6 m
 (12.5 or 25 ft)

Lateral Offset

From the Edge of the Traveled Way

$$Y = L_A - \frac{L_A}{L_R} X (flared)$$

$$=30 - \frac{30}{475} 175 = 29 ft$$

Problem 1. Barrier Design for Bridge Piers

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

Given

ADT = 850 vpd, speed = 50 mph, right side slope = 1V:10H

Design the barrier installation for the bridge piers

2011 RDG Table 3-1

U.S. Customary Units

Design			Foreslopes			Backslopes	
Speed (mph)	Design ADT	1V:6H or flatter	1V:5H to 1V:4H	1 V :3H	1V:3H	1V:5H to 1V:4H	1V:6H or flatter
≤40	UNDER 750° 750–1500 1500–6000 OVER 6000	7–10 10–12 12–14 14–16	7–10 12–14 14–16 16–18	b b b	7–10 12–14 14–16 16–18	7 –10 12–14 14–16 16–18	7–10 12–14 14–16 16–18
45–50	UNDER 750° 750–1500 1500–5000 OVER 6000	10=12 14=16 16=18 20=22	12–14 16–20 20–26 24–28	b b	8-10 10-12 12-14 14-16	8-10 12-14 14-16 18-20	10_12 14_16 15_18 20_22
55	UNDER 750° 750–1500 1500–6000 OVER 6000	12–14 16–18 20–22 22–24	14–18 20–24 24–30 26–32 ²); () ()	8–10 10–12 14–16 16–18	10–12 14–16 16–18 20–22	10–12 16–18 20–22 22–24
60	UNDER 750° 750–1500 1500–6000 OVER 6000	16-18 20-24 26-30 30-32"	20–24 26–32" 32–40* 36–44"	b b b	10–12 12–14 14–18 20–22	12-14 16-18 18-22 24-26	14–16 20–22 24–26 26–28
65–70°	UNDER 750° 750–1500 1500–6000 OVER 6000	18–20 24–26 28–32″ 30–34°	20–26 28–36° 34–42° 38–46°	b b b	10–12 12–16 16–20 22–24	14–16 18–20 22–24 26–30	14–16 20–22 26–28 28–30

1. Clear Zone Distance Lc = 14-16 ft = Lateral area of concern L_A

Suggested Runout Lengths, L_R (2011 RDG Table 5-10)

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

Table 5-10(b). Suggested Runout Lengths for Barrier Design (U.S. Customary Units)

	Runout Length (L_R) Given Traffic Volume (ADT) (ft)					
Design Speed (mph)	Over 10,000 veh/day	5,000 to 10,000 veh/day	1,000 to 5,000 veh/day	Under 1,000 veh/day		
80	470	430	380	330		
70	360	330	290	250		
60	300	250	210	200		
50	230	190	160	150		
40	160	130	110	100		
30	110	90	80	70		

Shy Line Offset L_S (2011 RDG Table 5-7)

3	49/6-2014

Design Speed		Shy-Line Offset L _s		
km/h	mph	m	ft	
130	80	3.7	12	
120	75	3.2	10	
110	70	2.8	9	
100	60	2.4	8	
90	55	2.2	7	
80	50	2	6.5	
70	45	1.7	6	
60	40	1.4	5	
50	30	1.1	4	

Suggested Flare Rates (2011 RDG Table 5-9)

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

Design	n Speed	Flare Rate for Barrier inside Shy Line	Flare Rate for I Shy I	•
km/h	[mph]		*	**
110	[70]	30:1	20:1	15:1
100	[60]	26:1	18:1	14:1
90	[55]	24:1	16:1	12:1
80	[50]	21:1	14:1	11:1
70	[45]	18:1	12:1	10:1
60	[40]	16:1	10:1	8:1
50	[30]	13:1	8:1	7:1

^{*}Suggested maximum flare rate for rigid barrier system

The MGS has been tested in accordance with NCHRP Report 35 TL-3 at 5:1 flare. Flatter flare rates for the MGS installations are also acceptable. The MGS should be installed using the flare rates shown or flatter for semi-rigid barriers beyond the shy line when installed in rock formations.

^{**} Suggested maximum flare rate for semi-rigid barrier system

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

- 1. Clear Zone Distance $L_C = 14$ ft 16 ft(2011 RDG Table 3.1)
- Lateral Area of Concern $L_A = 16$ ft (chosen)
- Suggested Runout Length $L_R = 150$ ft (2011 RDG Table 5.10)
- 4. Tangent Length from the Area of Concern L₁
- 5. Shy Line $L_S = 6.5$ ft (2011 RDG Table 5.7)
- 6. Lateral Offset L₂
- 7. Flare rate (RDG Table 5.9)
- 8. Length of need X
- Lateral Offset Y

Note: bridge transition segment length → 10-12 times the difference in lateral deflection between barriers

Required Length of Need in Advance of the Area of Concern

$$X = \frac{L_A + (b \mid a)(L_1) - L_2}{b \mid a + (L_A)/(L_R)} = \frac{16 + (1/11)(25) - 6}{(1/11) + (12/150)} = 71.8 \text{ ft} \Rightarrow 75 \text{ ft}$$

$$X = \frac{L_A - L_2}{(L_A)/(L_B)} = \frac{12 - 6}{16/150} = 56.25 ft => 75 ft$$

- End treatment length is not included in calculation
- Adjust for nominal metal beams lengths: 3.8 or 7.6 m
 (12.5 or 25 ft)

Lateral Offset

From the Edge of the Traveled Way

$$Y = L_A - \frac{L_A}{L_R} X (flared)$$

$$= 12 - \frac{12}{150} 75 = 6 ft$$

