

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

University of Puerto Rico at Mayagüez

Practical Guidelines for Temporary Traffic Control (TTC) at Highway Construction Sites

Instructor

CAA M 18 US

Benjamín Colucci Ríos, PhD, PE, PTOE, FITE, API, J.D.

December 12, 2013 - Saint Thomas, USVI

Puerto Rico Transportation
Technology Transfer Center Local Technical Assistance Program (LTAP)

Tel: (787) 834-6385

Fax: (787) 265-5695

E-mail: grisel.villarubia1@upr.edu

<u>irmali.franco1@upr.edu</u>

adlin.santos@upr.edu

http://www.prltap.org

CONTACT INFORMATION

Seminar Objectives

of the procedures to be followed at temporary highway utility construction sites using Part 6-Temporary Traffic Control (TTC) of the Manual of Uniform Traffic Control Devices (MUTCD).

2. Design and implementation of TTC plans for daytime and nighttime work activities

Topics to be covered: AM

- Overview of the Manual on Uniform Traffic Control Devices (MUTCD),
 December 2009 Edition, with
 Revisions 1 and 2 dated May 2012.
- Description of basic definitions (engineering judgment, engineering study, crash worthy, standards, guidance, option and support).
- Liability/tort claims of public work agencies, local municipalities and utility companies associated with negligent acts in highway work zones.
- Description of Part 6-TemporaryTraffic Control

- Description of the fundamental components of a Traffic Control Plan (TCP) in a temporary work zone:
 - Advance Warning Area, Transition Area, Activity Area and Termination Area
- Description and typical uses of traffic control devices used in TTC zones (signs, panels, cones, drums, signals, barricades, portable barriers, Truck Mounted Attenuators (TMA), electronic devices, Variable Message Signs (VMS) and Automatic Flagger Assistance Devices (AFAD)).
- Examples of adequate and inadequate use of Temporary Traffic Control (TTC) in highway and utility work zones.

Topics to be covered: PM

- Description of representative Typical Applications (TA), applicable to the Virgin Islands Department of Public Works (VIDPW).
- The role and responsibilities of the flagger in a TTC.
- The requirements for Flagger safety vest.
- The STOP/ SLOW PADDLE: Do's and Don'ts.

- **Brainstorming for** establishing awareness for the implementation of a **Temporary Traffic Control** (TTC) in USVI.
- Workshop: Development of Traffic Control Plans (TCP) for Temporary Traffic Control (a) Rural; (b) Urban.

Table of Content

- Module 1 Importance of Work Zone Safety
- Module 2 Federal Regulations Related to Highway Work Zones
 - Module 2a Work Zone Safety and Mobility Rule
 - Module 2b Temporary Traffic Control Devices Rule
 - Module 2c Worker Visibility Rule
- Module 3 An Overview to the MUTCD, December 2009 Edition
 - Module 3a Evolution of the MUTCD
 - Module 3b Revisions 1 & 2 (May 2012) to the MUTCD 2009
 Edition
 - Module 3c Known Errors in the Original MUTCD 2009 Edition
 - Module 3d Description of Basic Definitions

Table of Content

- Module 4 Part 6: Temporary Traffic Control
- Module 5 Typical Applications of Activities Associated with TTC
- Module 6 Flagger Control
- Module 7 TTC Zone Devices
- Module 8 Brainstorming for creating awareness of TTC in USVI
- Module 9 Examples of adequate/inadequate use of TTC in highway and utility work zones
- Module 10 Workshop: Development of a TTC Plan

Module 1

Importance of Work Zone Safety

Temporary Traffic Control in Highway Work Zones

in Highway Work Zones

Puerto Rico Transportation Technology Transfer Center

□ Includes:

- Road construction
- Road maintenance
- Utility works

- □ Risks to workers
 - Traffic flow
 - Work equipmentand vehicles

Puerto Rico Transportation Technology Transfer Center

Increase in traffic flow and congestion

Increase in number of trips higher than increase in roadway miles

Highway quality and level of service in decline

Issues of TTC in Highway Work Zones

More construction and repair is needed, resulting in more work zones

More work zones activities under heavy traffic

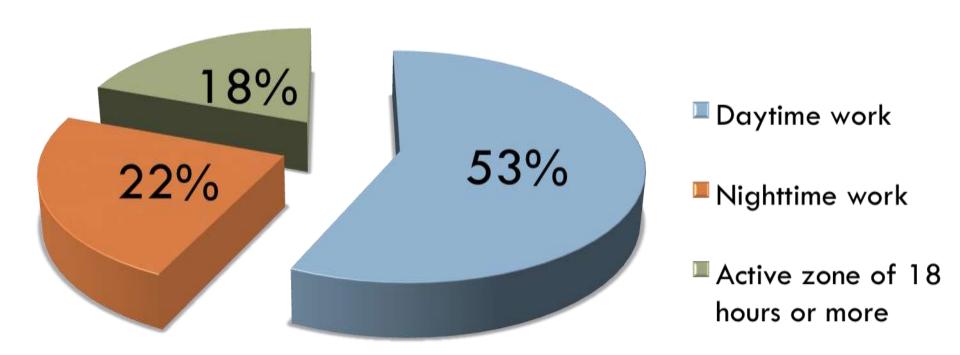
- Limited work schedules
- Increase in nighttime activities

High priority in work zone safety

835 fatalities and over 41,000 injured in 2007 (15%) pedestrians and cyclists)

Travelers are not happy with work zones

Unexpected and inconsistent conditions on the roadway cause anxiety and frustration to road users



7 31 K 2 31 6 3 III 6 6 7 K 2 6 6 7

ON AVERAGE:

1 FATALITY EACH 10 HOURS

1 INJURY EACH 13 MINUTES

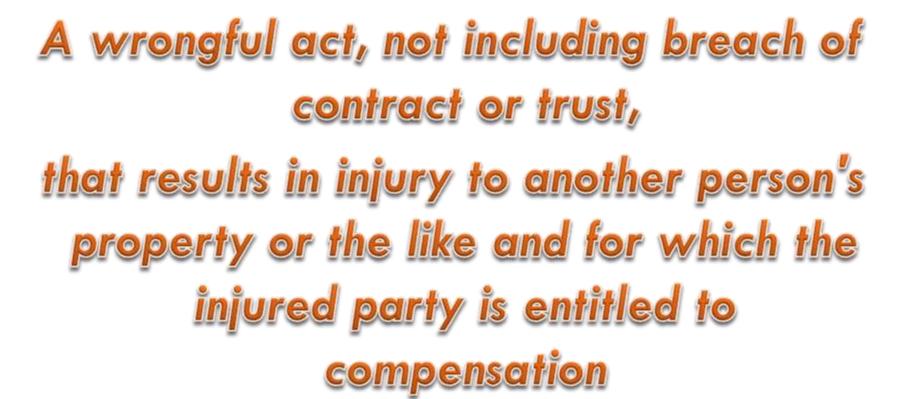
R

Temporary Traffic Control Devices

What Are the Main Hazards of TTCDs?

Workers, motorists face different hazards.

Workers


- Struck by motorist
- Struck by construction vehicle
- Fall from vehicle
- Angry motorists

Motorists

- Entering buffer or work space as TTCDs are setup or removed
- Merging as lane closes
- Traffic congestion, delays and rear end collisions

Puerto Rico Transportation Technology Transfer Center

Tort: Negligence

- An act or omission within the scope of the duties of an individual, agency, or organization that leads to the harm of a person or of the public; the failure to use reasonable care in one's actions
- Miss legal standard of protecting individuals against foreseeable risky, harmful acts of other members of society
- Negligent behavior towards others gives them rights to be compensated for the harm to their body or property
 - Duty of care
 - Breach of that duty
 - Breach causing harm in fact
 - Breach also causing harm in law
- Can be either criminal or civil in nature

Highway Tort Liability

 States are liable to lawsuits arising from death, injury, or property damage resulting from negligent design, construction, or maintenance of state highway facilities

 Compensation for damages caused by inaction, careless, or negligent actions by state transportation agency employees.

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

- Type of work activity
- Location and duration (short-term, intermediateterm, long-term)

Aspects to Consider in Highway Work Zones

- Roadway type / functional classification
- Traffic volume
- Speed differential
- Hazard potential
 - Prevention
 - Standard of care

Aspects to Consider in TTC in Highway Work Zones

Puerto Rico Transportation Technology Transfer Center

- Prioritize safety
 - Road users (pedestrians, disabled persons, drivers, trucks, older users, etc.)
 - Road crews; training is essential
 - MUTCD
 - Flagger procedures
- Planning and design of Temporary Traffic Control (TTC)
 - Follow MUTCD
 - Size, dimensions, colors, message and symbols
- Provide a clear and direct message
- Reduce conflicts with traffic
- Remove unnecessary / not applicable traffic control devices

Module 2

Federal Regulations Related to Highway Work Zones

Module 2a

WORK ZONE SAFETY AND MOBILITY RULE

□ PART 630 - PRECONSTRUCTION PROCEDURES

Title 23 Highways, Chapter I Federal Highway

Administration, Department of Transportation

- Subpart A Project Authorization and Agreements
- Subpart B Plans, Specifications, and Estimates
- Subpart D Geodetic Markers
- Subpart G Advance Construction of Federal-Aid Projects
- Subpart H Bridges on Federal Dams
- Subpart J Traffic Safety in Highway and Street Work Zones
- Subpart K Temporary Traffic Control Devices

Federal Register/Vol. 69, No. 174/Thursday, September 9, 2004/Rules and Regulations 54562

DEPARTMENT OF TRANSPORTATION

Federal Highway Administration

23 CFR Part 630

[FHWA Docket No. FHWA-2001-11130]

RIN 2125-AE29

Work Zone Safety and Mobility

AGENCY: Federal Highway Administration (FHWA), DOT.

ACTION: Final rule.

SUMMARY: The FHWA amends its regulation that governs traffic safety and mobility in highway and street work zones. The changes to the regulation will facilitate comprehensive consideration of the broader safety and mobility impacts of work zones across project development stages, and the

Government Printing Office's Web site at: http://www.access.gpo.gov/nara.

Rule on Work Zone Safety and Mobility

Background

History

Pursuant to the requirements of Section 1051 of the Intermodal Surface Transportation Efficiency Act of 1991 (ISTEA), (Pub. L. 102-240, 105 Stat. 1914; Dec. 18, 1991), the FHWA developed a work zone safety program to improve work zone safety at highway construction sites. The FHWA implemented this program through nonregulatory action by publishing a notice in the Federal Register on October 24, 1995 (60 FR 54562). This notice established the National Highway Work Zone Safety Program (NHWZSP) to enhance safety at highway construction, maintenance, and utility sites. In this

FHWA issued a supplemental notice of proposed rulemaking (SNPRM) on May 13, 2004, at 69 FR 26513. The SNPRM addressed the comments related to flexibility and scalability of provisions, eliminated ambiguous terms from the language, and reduced the documentation requirements. We received several supportive comments in response to the SNPRM. Most respondents noted that the SNPRM addressed the majority of their concerns regarding the originally proposed rule. However, they did offer additional comments regarding specific areas of concern. In the final rule issued today, the FHWA has addressed all the comments received in response to the SNPRM that are within the scope of this rulemaking

The regulation addresses the changing

Puerto Rico Transportation Technology Transfer Center

Establishes requirements and provides guidance for:

Overview of Rule

- Systematically addressing work zone safety and mobility impacts
- Developing strategies to help manage these impacts on all Federal-aid highway projects

"Better reflect current needs for improved safety and to minimize disruptions to traffic during the construction of highway projects"

- **Timeframe**
 - Published Final Rule on September 2004
 - Must implement rule provisions by October 2007

Rule Components

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER

Agency implemented policy for the systematic consideration and management of WZ impacts

> Processes and procedures to implement and sustain WZ policy (training, crash data, reviews, etc.)

. 0 1 i e y

Project-Level Procedures to Assess and Manage Impacts on Individual Projects (Transportation Management Plan)

Transportation Management Plan (TMP)

Document that includes a series of coordinated transportation management strategies and describes how can be applied to manage the highway work zone impacts.

STATE OF CALIFORNIA DEPARTMENT OF TRANSPORTATION

TRANSPORTATION MANAGEMENT PLAN

Interstate 5 "Boat Section" Rehabilitation

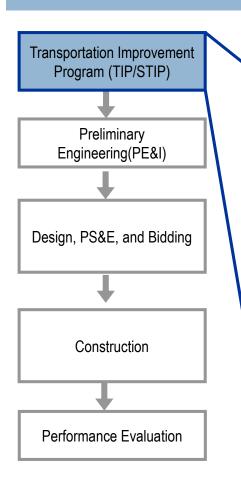
03-SAC-5-KP 36.4/37.8 (PM 22.6/23.5) EA 03-0A3601

February 25, 2008

TMP Components

- Puerto Rico Transportation Technology Transfer Center
- A TMP can be a single document or several compiled and coordinated documents & plans
- Must always include a Temporary **Traffic Control** (TTC)
- □ For significant projects, the TMP should include a Traffic **Operations** component (TO) and a **Public Information component**

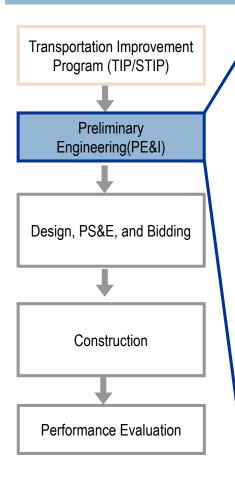
A significant project is one that the agency expects to have a high level of disruption



Transportation Improvement Program (TIP/STIP)

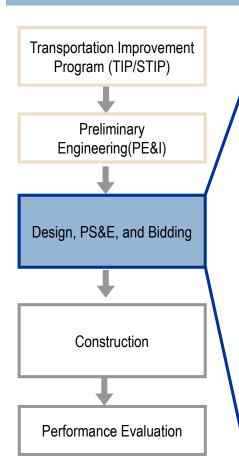
Puerto Rico Transportation Technology Transfer Center

 Early identification of projects that are expected to have significant impacts


Project development phase

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

Identify potential work zone impacts


Preliminary Engineering

- **Identify** potential transportation management strategies
- <u>Identify</u> other coordination issues (utilities, community impacts, etc.)

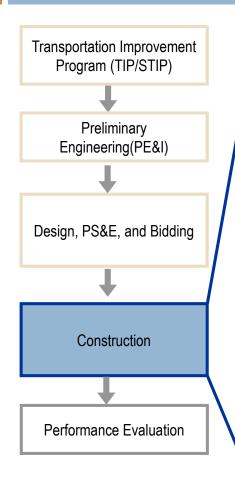
Design, PS&E, and Bidding

Evaluate all impacts

Consider alternatives for design, construction, contracting, management strategies

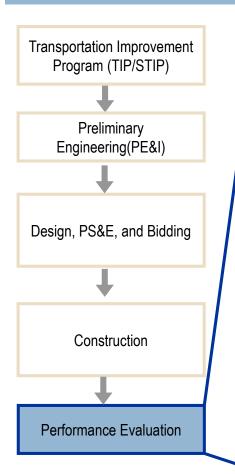
Develop proper TMP

Select proper transportation management strategies that help mitigate work zone impacts


Include TMP elements in plans, specifications and estimates (PS&E)

Construction

Implement TMP requirements


Puerto Rico Transportation Technology Transfer Center

- Monitor safety and mobility
 - Use field observations, crash data and traffic operations information to manage impacts
- Consult with stakeholders to keep them inform and get their input and knowledge of regional aspects
- Review projects as necessary
- Review TMP if necessary

Performance Evaluation

- Analyze crash and traffic operation data from multiple projects
- Save data and information that helps to identify improvements in procedures and practices
- Perform a biannual review process
 - Analysis of work zone data and/or project reviews
 - Improve procedures, data and information resources and training programs

Module 2b

TEMPORARY TRAFFIC CONTROL DEVICES RULE

Title 23 Highways, Chapter I Federal Highway Administration, Department of Transportation

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

- Subpart A Project Authorization and Agreements
- Subpart B Plans, Specifications, and Estimates
- Subpart D Geodetic Markers
- Subpart G Advance Construction of Federal-Aid Projects
- Subpart H Bridges on Federal Dams
- Subpart J Traffic Safety in Highway and Street Work Zones
- Subpart K Temporary Traffic Control Devices

Rule on Temporary Traffic Control Devices - 23 CFR Part 630 Subpart K

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

SUMMARY: The FHWA is adding a new

DEPARTMENT OF TRANSPORTATION

Federal Highway Administration

23 CFR Part 630

[FHWA Docket No. FHWA-2006-25203]

RIN 2125-AF10

Temporary Traffic Control Devices

AGENCY: Federal Highway

Administration (FHWA), DOT.

ACTION: Final rule.

Subpart K to 23 CFR part 630 to supplement existing regulations that govern work zone safety and mobility in highway and street work zones to include conditions for the appropriate use of, and expenditure of funds for, uniformed law enforcement officers. positive protective measures between workers and motorized traffic, and installation and maintenance of temporary traffic control devices during construction, utility, and maintenance operations. These regulations are intended to decrease the likelihood of fatalities and injuries to road users, and to workers who are exposed to motorized traffic (vehicles using the highway for purposes of travel) while working on Federal-aid highway projects. The regulations are issued in accordance with section 1110 of the Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users (SAFETEA-LU), Public Law 109-59, 119 Stat. 1227, codified at 23 U.S.C. 109(e) and 112(g).

DATES: Effective Date: December 4, 2008.

- Supplement to Work Zone Safety and Mobility Policy (Title 23 CFR 630 Subpart J)
- Purpose: Reduce worker (and road users) exposure and risk from motorized traffic.
- Applies to Federal-aid projects only; encourages states to use for other projects.

- □ Publication date: November 1, 2006
- Effective date: December 4, 2008

ITER TO THE REPORT OF THE PERSON OF THE PERS

- A. Positive Protection Devices
- **B.** Exposure Control Measures
- c. Other Traffic Control Measures
- D. Uniformed Law Enforcement Officers

Rule Components

- E. Work Vehicles and Equipment
- F. Payment for Traffic Control
- G. Maintenance of Traffic Control

 Policy and related processes, procedures, and/or guidance established under Subpart J shall include consideration of road user and worker safety

Work Zone Policy

- Use of positive protection devices to prevent intrusions;
- Exposure control measures to minimize exposure;
- Other traffic control measures to minimize crashes;
- Safe entry/exit of work vehicles and equipment onto/from the travel lanes
- Should be based on consideration of standards and/or guidance in the MUTCD and the AASHTO Roadside Design Guide, as well as agency guidelines and project characteristics and factors

A. Positive Protection Devices

- Use shall be based on an engineering study
- Use of positive protection shall be considered where
 - workers are at increased risk from traffic, and
 - positive protection devices offer the highest potential for increased safety for workers and road users

Example of Factors and Characteristics to Consider for TCDs

- Project scope and duration
- Anticipated traffic speeds through the work zone
- Anticipated traffic volume
- Vehicle mix
- Type of work (related to worker exposure and crash risks)
- Distance between traffic and workers, and extent of worker exposure
- Escape paths available for workers to avoid a vehicle intrusion into the work space
- □ Time of day (e.g., night work)

- Work area restrictions (including impact on worker exposure)
- Consequences from/to road users resulting from roadway departure
- Potential hazard to workers and road users presented by device itself and during device placement and removal
- Geometrics that may increase crash risks (e.g., poor sight distance, sharp curves)
- Access to/from work space
- Roadway classification
- Impacts on project cost and duration

Examples of Conditions that may Warrant Use of Positive Protection

- WZs that provide workers no means of escape from motorized traffic;
- Long duration WZs that result in substantial worker exposure to traffic
- Projects with high anticipated operation speeds
- Work operations that place workers close to travel lanes open to traffic
- Roadside hazards that will remain in place overnight or longer

B. Exposure Control Measures

- Should be considered to avoid or minimize exposure for workers and road users
 - Full road closures
 - Ramp closures
 - Median crossovers
 - Full or partial detours or diversions
 - Protection of WZ setup and removal using rolling road blocks
 - Performing work at night or during off-peak periods
 - Accelerated construction techniques

C. Other Traffic Control Measures

- Effective, credible signing
- Changeable message signs
- Arrow panels
- Warning flags and lights on signs
- Longitudinal and lateral buffer space
- Trained flaggers and spotters
- Enhanced flagger station setups
- Intrusion alarms
- Rumble strips
- Pace or pilot vehicle
- High quality work zone pavement markings and removal of misleading markings
- Channelizing device spacing reduction

- Longitudinal channelizing barricades
- Work zone speed management (including changes to the regulatory speed and/or variable speed limits)
- Law enforcement
- Automated speed enforcement (where permitted by law)
- Drone radar
- Worker and work vehicle/equipment visibility
- Worker training
- Public information and traveler information
- Temporary traffic signals

Puerto Rico Transportation Technology Transfer Center

 Each agency, in partnership with the FHWA, shall develop a policy addressing the use of uniformed law enforcement on Federal-aid highway projects

D. Uniformed Law Enforcement

- The policy may consist of processes, procedures, and/or guidance
 - Criteria, training requirements, reimbursement procedure, etc.
- Need for law enforcement is greatest on projects with high traffic speeds and volumes, and where the work zone is expected to result in substantial disruption to or changes in normal traffic flow patterns

Sample of Project Conditions for Uniformed Law Enforcement

TOURIO RICO TRANSFORMATION TECHNOLOGI PRANSFER CENTER

- Frequent worker presence adjacent to high-speed traffic without positive protection devices
- Traffic control setup or removal that presents significant risks to workers and road users
- 3. Complex or very short term changes in traffic patterns with significant potential for road user confusion or worker risk from traffic exposure
- 4. Night work operations that create substantial traffic safety risks for workers and road users

Sample of Project Conditions for Uniformed Law Enforcement

- Existing traffic conditions and crash histories indicate a potential for substantial safety and congestion impacts related to the work zone activity, and may be mitigated by improved driver behavior and awareness of work zone
- 6. Work zone operations that require brief stoppage of all traffic in one or both directions
- 7. High-speed roadways where unexpected or sudden traffic queuing is anticipated, especially if the queue forms a considerable distance in advance of the work zone or immediately adjacent to the work space

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

□ Agencies should address safe means for work vehicles and equipment to enter and exit traffic lanes and for delivery of construction materials to the work space, based on individual project characteristics and factors

E. Work Vehicles and Equipment

F. Payment

- Payment for traffic control features and operations shall not be incidental to the contract, or included in payment for other items of work not related to traffic control and safety
- Separate pay items <u>shall</u> be provided for major categories of traffic control devices, safety features, and WZ safety activities
- For method-based specs, unit price pay items, lump sum pay items, or a combination thereof may be used
- Specs should include provisions to require and enforce compliance with implementation and maintenance of the project TMP and related traffic control items

Module 2c

WORKER VISIBILITY RULE

CENTER

Puerto Rico Transportation Technology Transfer Center

67792 Federal Register/Vol. 71, No. 226/Friday, November 24, 2006/Rules and Regulations

- g.4. Glass or glass lined (including vitrified or enameled coatings);
- g.5. Tantalum or tantalum alloys;
- g.6. Titanium or titanium alloys;
- g.7. Zirconium or zirconium alloys; or
- g.8. Niobium (columbium) or niobium alloys.
- h. Multi-walled piping incorporating a leak detection port, in which all surfaces that come in direct contact with the chemical(s) being processed or contained are made from any of the following materials:
- h.1. Alloys with more than 25% nickel and 20% chromium by weight:
 - h.2. Fluoropolymers:
- h.3. Glass (including vitrified or enameled coatings or glass lining);
 - h.4. Graphite or carbon-graphite;
- h.5. Nickel or alloys with more than 40% nickel by weight;
- h.6. Tantalum or tantalum alloys;
- h.7. Titanium or titanium alloys;
- h.8. Zirconium or zirconium alloys; or
- h.9. Niobium (columbium) or niobium alloys.
- i. Multiple-seal and seal-less pumps with manufacturer's specified maximum flow-rate greater than 0.6 m³/hour, or vacuum pumps with manufacturer's specified maximum flow-rate greater than 5 m³/hour (under standard temperature (273 K (0 °C)) and pressure (101.3 kPa) conditions), and casings (pump bodies), preformed casing liners, impellers, rotors or jet pump nozzles designed for such pumps, in which all surfaces that come into direct contact with the chemical(s) being processed are made from any of the of the following materials:
 - i.1. Alloys with more than 25% nickel and

Dated: November 16, 2006.

Christopher A. Padilla,

Assistant Secretary for Export Administration.

[FR Doc. E6-19825 Filed 11-22-06; 8:45 am]

DEPARTMENT OF TRANSPORTATION

Federal Highway Administration

23 CFR Part 634

[FHWA Docket No. FHWA-2005-23200] RIN 2125-AF11

Worker Visibility

AGENCY: Federal Highway Administration (FHWA), DOT.

ACTION: Final rule.

SUMMARY: Pursuant to Section 1402 of the Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users (SAFETEA-LU), this final rule establishes a policy for the use of high-visibility safety apparel. The FHWA establishes a new Part in title 23, Code of Federal Regulations (CFR) that requires the use of high-visibility safety apparel and provides guidance on its application. This rulemaking applies only to workers who are working within the rights-of-way of Federal-aid comments received may be viewed online through the Document Management System (DMS) at http://dms.dot.gov. The DMS is available 24 hours each day, 365 days each year. Electronic submission and retrieval help and guidelines are available under the help section of the Web site.

An electronic copy of this document may also be downloaded from the Office of the Federal Register's home page at: http://www.archives.gov and the Government Printing Office's Web page at: http://www.access.gpo.gov/nara.

Background

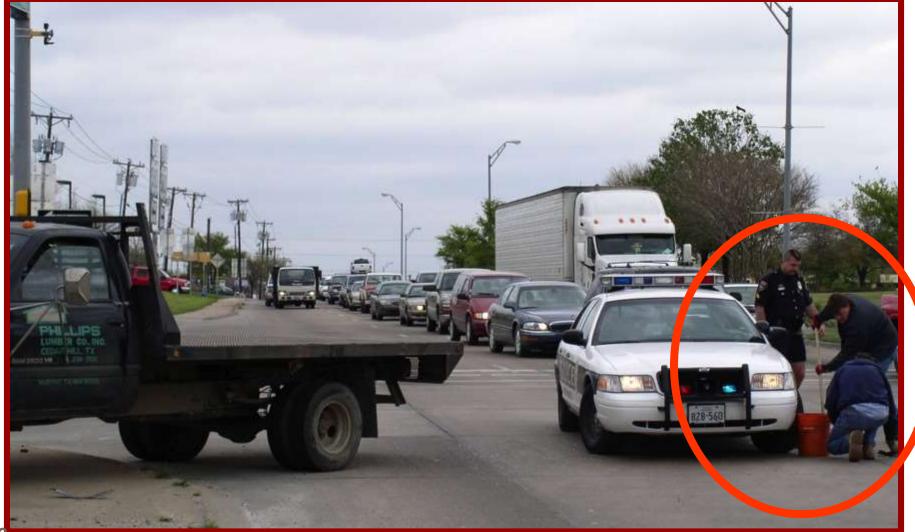
On April 24, 2006, at 71 FR 20925, the FHWA published a NPRM proposing to establish a policy for the use of highvisibility safety apparel for workers who are working within the Federal-aid highway rights-of-way. This NPRM proposed regulations implementing the requirements of Section 1402 of the Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users (SAFETEA-LU) (Pub. L. 109-59; August 10, 2005), which directed the Secretary of Transportation to, within one year, issue regulations to decrease the likelihood of worker injury and maintain the free flow of vehicular traffic by requiring workers whose duties place them on or in close proximity to a Federal-aid hig wear high-visibility safety app

Worker Visibility Rule

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

All workers within the right-of-way of a Federal-aid highway who are exposed either to traffic (vehicles using the highway for purposes of travel) or to construction equipment within the work area shall wear high-visibility safety apparel

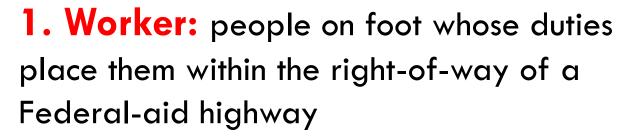
Publication date:


November 24, 2006

Effective date:

November 24, 2008

Representative crash scene



Shortcoming of wearing NO vest!

Pertinent Definitions associated with TTC in Highway Work Zones

- highway construction and maintenance forces
- survey crews
- utility crews
- responders to incidents within the highway right-of-way, including volunteers
- law enforcement personnel when directing traffic, investigating crashes, and handling lane closures, obstructed roadways, and disasters

Pertinent Definitions associated with TTC in Highway Work Zones (continue) PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

- 2. High-visibility safety apparel: personal protective safety clothing intended to provide conspicuity during both daytime and nighttime usage
 - Meets Performance Class 2 or 3 requirements of the ANSI/ISEA 107-2004 "American National Standard for High-Visibility Safety Apparel and Headwear"

3. Close proximity: within the highway right-of-way of a Federal-aid highway

American National Standards Institute (ANSI)

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

TER P

- ANSI-107-2004 High visibility garment (updated 1999 standards)
- International Safety Equipment Association (ISEA)
 - www.ansi107.org
 - www.safetyequipment.org
 - □ Phone (703) 525-1695

Puerto Rico Transportation Technology Transfer Center

- Color and minimum areas for retroreflective and background materials
- Minimum washing cycles

Describe test methods for materials

- Garment Performance Class (PC) 1, 2 and 3
 - Garment selection shall be based on an assessment of the work environment

□ Performance Class 3: PC3

- □ For use in most severe environments
- Offers the greatest amount of fluorescent and reflective coverage
- □ Performance Class 2: PC2
 - For moderately severe environments
 - Balance of fluorescent and reflective materials
- □ Performance Class 1: PC1
 - For low-risk environments
 - Lowest levels of fluorescent and reflective materials

Variables to Consider in Assessing Risk

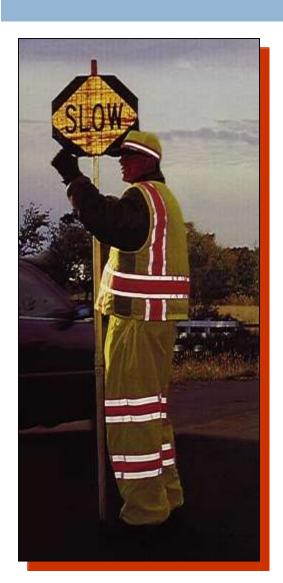
- Speed of traffic through the work zone
- Amount of traffic through the work zone
- Time of day / day or night
- "Background clutter" in the work zone
- Amount of activity in the work zone
 - Other construction vehicles, etc.
- Type of activity the worker is performing
 - Where is the worker's attention?
 - Towards on-coming traffic or the task at hand?
- Location of work and proximity to traffic and other construction vehicles

Use of Performance Class 3 Garments

- Anyone who has a high task load and is in close proximity to moving equipment or traffic at high speeds
- □ Highest speed (>50 mph)
- Work occurs at night
- Worker's attention is diverted from on-coming traffic and surrounding environment
- "Cluttered" work zone with high levels of activity
- Worker must be visible from all angles and identifiable as a person
- Worker has no separation between them and traffic

- □ Class 3 ensemble
 - Class 2 vest, Class E bottom

- Class 3 one piece
 - Jacket
 - Coat
 - Torso covering garment with full or partial sleeve





Performance Class 3

Performance Class 3

- Roadway construction personnel and flaggers
- utility workers
- survey crews
- emergency response personnel
- vehicle assistance personnel

Use of Performance Class 2 Garments

- Greater visibility needed due to inclement weather conditions
- Complex and cluttered backgrounds
- Most work is performed during daytime hours
- Worker's attention is diverted from oncoming traffic and surrounding environment

Performance Class 2

Performance Class 2 - Typical Examples

- Roadway construction workers
- Utility workers
- Survey crews
- School crossing guards in traffic
- Delivery vehicle drivers
- High-volume parking and/or toll gate personnel
- Airport baggage handlers/ground crew
- Emergency response personnel,
- Law enforcement personnel
- Trash collection and recycling
- Crash site investigators

Use of Performance Class 1 Garments

- Worker's attention is fully on oncoming traffic and surrounding environment
- Separation between the worker and traffic
- Not much competition for worker attention
- Controlled environment where driver expects to move very slowly

- Parking lot attendants
- People retrieving shopping carts from parking areas
- Workers exposed to the hazards of warehouse equipment traffic and roadside "right-of-way" or sidewalk maintenance workers
- Applicable to certain delivery vehicle drivers

71

ANSI 207-2006 Public Safety Vest Standard

ANSI 207-2006 Standard

- Understanding that competing hazards exists for public safety employees that also need high visibility
 - □ Pockets cannot create gaps in material 1.97 in
 - □ Panels-limited to 72 in²
 - Identification

garments

- Fire: red
- **Police: blue**
- **EMS:** green
- Tear-away: should be incorporated when applicable

Vest Design Examples

Puerto Rico Transporta

Assessment of Garment Quality and Wear

74

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

Acceptable

New high-visibility safety apparel is characterized by having vivid color contrast and high reflectivity.

Acceptable

Apparel that is used but is in likenew condition is characterized as having excellent color contrast, excellent reflectivity, and is not faded or soiled.

Marginal

Characteristics: Good reflectivity although the vest has some soiling and light fading.

Marginal *

Characteristics: Good reflectivity but has some soiling and light fading of material. *Note: This picture was taken with a flash and simulates nighttime conditions.

Unacceptable

Characteristics: little or no reflectivity, and soiled and faded material.

Unacceptable

Characteristics: Poor color contrast, low or no reflectivity, significant fading or soiling, and deteriorated reflective strips.

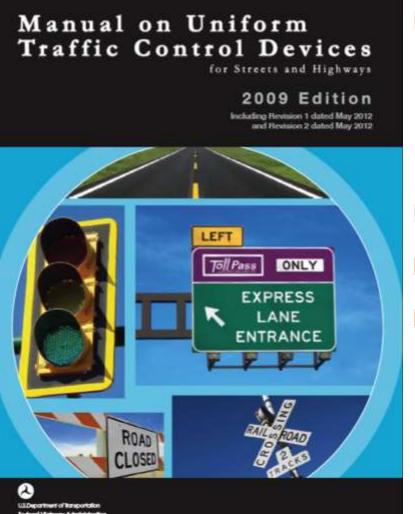
Pictures provided by Michigan D Transportation and Washington

Module 3

An Overview to the Manual on Uniform Traffic Control Devices (MUTCD), December 2009 Edition

Module 3a

Evolution of the Manual on Uniform Traffic Control Devices (MUTCD)



Evolution of the Manual on Uniform Traffic Control Devices (MUTCD)

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

- 1988, 1993, 2000, 2003,
 November 2004,
 December 2007 and
 December 2009
- □ Two revisions: May 2012
- □ 23 CFR, Part 655, Subpart F
- ...national standard for all traffic control devices installed on any street, highway, or bicycle trail open to public travel...

Introduction

- General
 - Includes definitions
- Signs
- 3. Markings
- 4. Highway traffic signals
- Low-volume roads

- 6. Temporary traffic control (TTC)
- School areas
- Railroad and light rail transit grade crossings
- Bicycle facilities

Application of MUTCD

"... in 1966, the Secretary of Transportation has decreed that traffic control devices on all streets and highways in each State (US territories) shall be in substantial conformance with standards issued or endorsed by the Federal Highway Administration."

Puerto Rico Transportation Technology Transfer Center

"...all signs, signals, markings, and other devices used to regulate, warn, or guide traffic, placed on, over, or adjacent to a street, highway, pedestrian facility, or bikeway by authority of a public agency having jurisdiction."

Traffic Control Device Defined (MUTCD)

Module 3b

Revisions 1 and 2 of May 2012, to the Manual on Uniform Traffic Control Devices (MUTCD) 2009 Edition

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

- The FHWA published the 2009 MUTCD with Revision Numbers 1 and 2 incorporated, dated May 2012
- Available ONLY on Portable Document Format (PDF) in the FHWA's webpage: http://mutcd.fhwa.dot.gov/pdfs/2009r1r2/pdf_index.htm
 - See it now!
 - Click here for Revised PDF version with HOTLINKS
 - Click here for Revised PDF version without HOTLINKS
 - Click here for the **ORIGINAL** <u>MUTCD 2009 Ed. PDF version</u>
- The Revision's List is available online (Click here to see it now).
 - Note: The revisions where made to a few sections of Part 1 and Part 2 of the MUTCD.

How can I identify the revised content in the MUTCD?

- "Note that, in the PDF version of the 2009 Edition of the MUTCD with Revision Numbers 1 and 2 incorporated, a black vertical line and the notation "Rev. 1" or "Rev. 2" in the margin alongside a particular paragraph or table denotes the location of the changes that have been made with Revisions Numbers 1 and 2, respectively."
 - As illustrated next!
 - Click here to see the Revision's List.

for Streets and Highways

Changes to front page

2009 Edition

Including Revision 1 dated May 2012 and Revision 2 dated May 2012

Table I-2. Target Compliance Dates Established by the FHWA

- 1					
		2009 MUTCD Section Number(s)	2009 MUTCD Section Title	Specific Provision	Compliance Date
		2A.08	Maintaining Minimum Retroreflectivity	Implementation and continued use of an assessment or management method that is designed to maintain regulatory and warning sign retroreflectivity at or above the established minimum levels (see Paragraph 2)	2 years from the effective date of this revision of the 2009 MUTCD*
		2A.19	Lateral Offset	Crashworthiness of sign supports on roads with posted speed limit of 50 mph or higher (see Paragraph 2)	January 17, 2013 (date established in the 2000 MUTCD)
		2B.40	ONE WAY Signs (R6-1, R6-2)	New requirements in the 2009 MUTCD for the number and locations of ONE WAY signs (see Paragraphs 4, 9, and 10)	December 31, 2019
		2C.06 through 2C.14	Horizontal Alignment Warning Signs	Revised requirements in the 2009 MUTCD regarding the use of various horizontal alignment signs (see Table 2C-5)	December 31, 2019
	2E.31, 2E.33, and 2E.36		Plaques for Left-Hand Exits	New requirement in the 2009 MUTCD to use E1-5aP and E1-5bP plaques for left-hand exits	December 31, 2014
Rev. 2		4D.26	Yellow Change and Red Clearance Intervals	New requirement in the 2009 MUTCD that durations of yellow change and red clearance intervals shall be determined using engineering practices (see Paragraphs 3 and 6)	5 years from the effective date of this revision of the 2009 MUTCD, or when timing adjustments are made to the individual intersection and/or corridor, whichever occurs first
		4E.06	Pedestrian Intervals and Signal Phases	New requirement in the 2009 MUTCD that the pedestrian change interval shall not extend into the red clearance interval and shall be followed by a buffer interval of at least 3 seconds (see Paragraph 4)	5 years from the effective date of this revision of the 2009 MUTCD, or when timing adjustments are made to the individual intersection and/or corridor, whichever occurs first
		6D.03**	Worker Safety Considerations	New requirement in the 2009 MUTCD that all workers within the right-of-way shall wear high-visibility apparel (see Paragraphs 4, 6, and 7)	December 31, 2011
		6E.02**	High-Visibility Safety Apparel	New requirement in the 2009 MUTCD that all flaggers within the right-of-way shall wear high-visibility apparel	December 31, 2011
		7D.04**	Uniform of Adult Crossing Guards	New requirement in the 2009 MUTCD for high-visibility apparel for adult crossing guards	December 31, 2011
		8B.03, 8B.04	Grade Crossing (Crossbuck) Signs and Supports	Retroreflective strip on Crossbuck sign and support (see Paragraph 7 in Section 8B.03 and Paragraphs 15 and 18 in Section 8B.04)	December 31, 2019
		8B.04	Crossbuck Assemblies with YIELD or STOP Signs at Passive Grade Crossings	New requirement in the 2009 MUTCD for the use of STOP or YIELD signs with Crossbuck signs at passive grade crossings	De 31,

Section 1A.09 Engineering Study and Engineering Judgment

Support:

Definitions of an engineering study and engineering judgment are contained in Section 1A.13.

Standard:

This Manual describes the application of traffic control devices, but shall not be a legal requirement for their installation.

Guidance:

04

The decision to use a particular device at a particular location should be made on the basis of either an engineering study or the application of engineering judgment. Thus, while this Manual provides Standards, Gridance, and Options for design and applications of traffic control devices, this Manual should not be considered a substitute for engineering judgment. Engineering judgment should be exercised in the selection and application of traffic control devices, as well as in the location and design of roads and streets that the devices complement.

Early in the processes of location and design of roads and streets, engineers should coordinate such location and design with the design and placement of the traffic control devices to be used with such roads and streets.

Module 3c

Known Errors in the Original Manual on Uniform Traffic Control Devices (MUTCD) 2009 Edition

- "The FHWA intends to correct these errors via a future rulemaking action. This list of known errors is provided solely for the information of MUTCD users and does not constitute official changes to the MUTCD at this time."
- Approximately 80 errors where identified: most of them sentences or table columns out of order or incorrect use of words.
 - Click here to see the List of Known Errors.

Module 3d

DESCRIPTION OF BASIC DEFINITIONS, MUTCD DECEMBER 2009 REVISED EDITION

Section 1A.13: Definitions of Headings, Words, and Phrases in this Manual - **Standard**

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

A. Standard — a statement of required, mandatory, or specifically prohibitive practice regarding a traffic control device. All Standard statements are labeled, and the text appears in bold type. The verb "shall" is typically used. The verbs "should" and "may" are not used in Standard statements. Standard statements are sometimes modified by Options.

NOTE: Revision 1 of May 2012 modified this definition by eliminating the following text which was the last sentence of the original text of MUTCD 2009 Ed.:

Standard statements shall not be modified or compromised based on engineering judgment or engineering study.

Standard:

02 The Manual on Uniform Traffic Control Devices (MUTCD) is incorporated by reference in 23 Code of Federal Regulations (CFR), Part 655, Subpart F and shall be recognized as the national standard for all traffic control devices installed on any street, highway, bikeway, or private road open to public travel (see definition in Section 1A.13) in accordance with 23 U.S.C. 109(d) and 402(a). The policies and procedures of the Federal Highway Administration (FHWA) to obtain basic uniformity of traffic control devices shall be as described in 23 CFR 655, Subpart F.

Section 1A.13: Definitions of Headings, Words, and Phrases in this Manual - Guidance

Puerto Rico Transportation Technology Transfer Center

B. Guidance—a statement of recommended, but not mandatory, practice in typical situations, with deviations allowed if engineering judgment or engineering study indicates the deviation to be appropriate. All Guidance statements are labeled, and the text appears in unbold type. The verb "should" is typically used. The verbs "shall" and "may" are not used in Guidance statements. Guidance statements are sometimes modified by Options.

Section 1A.02 Principles of Traffic Control Devices

Guidance:

- 02 To be effective, a traffic control device should meet five basic requirements:
- A. Fulfill a need;
- B. Command attention;
- C. Convey a clear, simple meaning;
- D. Command respect from road users; and
- E. Give adequate time for proper response.

C. Option—a statement of practice that is a permissive condition and carries no requirement or recommendation. Option statements sometime contain allowable modifications to a Standard or Guidance statement. All Option statements are labeled, and the text appears in unbold type. The verb "may" is typically used. The verbs "shall" and "should" are not used in Option statements.

Words, and Phrases in this Manual - Option

Section 1A.13: Definitions of Headings,

Option:

04 With the exception of symbols and colors, minor modifications in the specific design elements of a device may be made provided the essential appearance characteristics are preserved.

Section 1A.13: Definitions of Headings, Words, and Phrases in this Manual - Support

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

D. Support—an informational statement that does not convey any degree of mandate, recommendation, authorization, prohibition, or enforceable condition. Support statements are labeled, and the text appears in unbold type. The verbs "shall," "should," and "may" are not used in Support statements.

Support:

04 The definition of the word "speed" varies depending on its use. The definitions of specific speed terms are contained in Section 1A.13.

Crashworthy

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

43. Crashworthy—a characteristic of a roadside appurtenance that has been successfully crash tested in accordance with a national standard such as the National Cooperative Highway Research Program Report 350, "Recommended Procedures for the Safety Performance Evaluation of **Highway Features.**"

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

64. Engineering Judgment—the evaluation of available pertinent information, and the application of appropriate principles, provisions, and practices as contained in this Manual and other sources, for the purpose of deciding upon the applicability, design, operation, or installation of a traffic control device. Engineering judgment shall be exercised by an engineer, or by an individual working under the supervision of an engineer, through the application of procedures and criteria established by the engineer. Documentation of engineering judgment is not required.

Engineering judgment

Engineering study

65. Engineering Study—the comprehensive analysis and evaluation of available pertinent information, and the application of appropriate principles, provisions, and practices as contained in this Manual and other sources, for the purpose of deciding upon the applicability, design, operation, or installation of a traffic control device. An engineering study shall be performed by an engineer, or by an individual working under the supervision of an engineer, through the application of procedures and criteria established by the engineer. An engineering study shall be documented.

229. Temporary Traffic Control Zone—an area of a highway where road user conditions are changed because of a work zone or incident by the use of temporary traffic control devices, flaggers, uniformed law enforcement officers, or other authorized personnel.

Traffic Control Device (TCD)

238. Traffic Control Device—a sign, signal, marking, or other device used to regulate, warn, or guide traffic, placed on, over, or adjacent to a street, highway, private road open to public travel, pedestrian facility, or shared-use path by authority of a public agency or official having jurisdiction, or, in the case of a private road open to public travel, by authority of the private owner or private official having jurisdiction.

Worker

256. Worker—a person on foot whose duties place him or her within the right-of-way of a street, highway, or pathway, such as street, highway, or pathway construction and maintenance forces, survey crews, utility crews, responders to incidents within the street, highway, or pathway right-of-way, and law enforcement personnel when directing traffic, investigating crashes, and handling lane closures, obstructed roadways, and disasters within the right-of-way of a street, highway, or pathway.

What represents a Temporary Traffic Control (TTC) Plan?

Puerto Rico Transportation Technology Transfer Center

- Describes TTC measures to be used for facilitating road users through a work zone or an incident area.
- Plays a vital role in providing continuity of reasonably safe and efficient road user flow when a work zone, incident, or other event temporarily disrupts normal road user flow.
- TTC plans range in scope from being very detailed to simply referencing typical drawings.
- □ The degree of detail in the TTC plan depends entirely on the nature and complexity of the situation.

for Streets and Highways

2009 Edition

Including Revision 1 dated May 2012 and Revision 2 dated May 2012

PART 1. GENERAL

Section 1A.02 Principles of Traffic Control Devices

NTER NTER

Puerto Rico Transportation Technology Transfer Center

Guidance:

- 02 To be effective, a traffic control device should meet five basic requirements:
 - A. Fulfill a need;
 - B. Command attention;
 - C. Convey a clear, simple meaning;
 - D. Command respect from road users; and
 - E. Give adequate time for proper response.

for Streets and Highways

2009 Edition

Including Revision 1 dated May 2012 and Revision 2 dated May 2012

PLEASE REFER TO THE MUTCD, DECEMBER 2009 EDITION, PART I: GENERAL (PDF VERSION)

PRESS HERE

for Streets and Highways

2009 Edition

Including Revision 1 dated May 2012 and Revision 2 dated May 2012

PART 5. TRAFFIC CONTROL DEVICES FOR LOW-VOLUME ROADS

- A. General
- B. Regulatory Signs
- C. Warning Signs
- D. Guide Signs
- E. Markings
- F. Traffic Control for Highway-Rail

 Grade Crossings
- G. Temporary Traffic Control Zones
- H. Traffic Control for School Areas

for Streets and Highways

2009 Edition

Including Revision 1 dated May 2012 and Revision 2 dated May 2012

PLEASE REFER TO THE MUTCD, DECEMBER 2009 EDITION, PART 5: TRAFFIC CONTROL DEVICES FOR LOW-VOLUME ROADS (PDF VERSION)

PRESS HERE

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

Standard:

01 A low-volume road shall be defined for this Part of the Manual as follows:

Section 5A.01: Function

- A. A low-volume road shall be a facility lying outside of built-up areas of cities, towns, and communities, and it shall have a traffic volume of less than 400 AADT.
- B. A low-volume road shall not be a freeway, an expressway, an interchange ramp, a freeway service road, a road on a designated State highway system, or a residential street in a neighborhood. In

terms of highway clas conventional road or 1A.13.

C. A low-volume road unpaved.

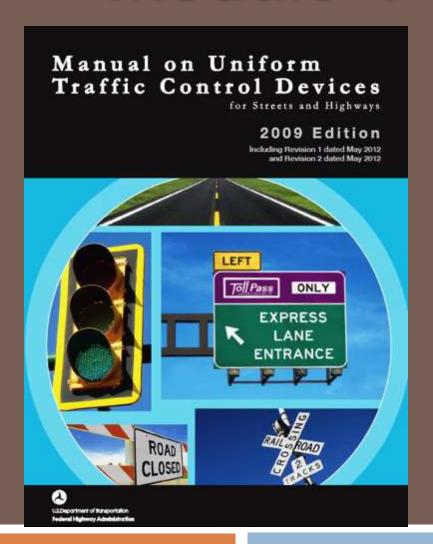
tion of a lefined in Section

paved or

Chapter 5G: Temporary Traffic Control Zones Section 5G.01: Introduction

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

Guidance:


- 01 The safety of road users, including pedestrians and bicyclists, as well as personnel in work zones, should be an integral and high priority element of every project in the planning, design, maintenance, and construction phases. Part 6 should be reviewed for additional criteria, specific details, and more complex temporary traffic control zone requirements. The following principles should be applied to temporary traffic control zones:
- A. Traffic movement should be disrupted as little as possible.
- B. Road users should be guided in a clear and positive manner while approaching and within construction, maintenance, and utility work areas.
- C. Routine inspection and maintenance of traffic control elements should be performed both day and night.
- D. Both the contracting agency and the contractor should assign at least one person on each project to have day-to-day responsibility for assuring that the traffic control elements are operating effectively and any needed operational changes are brought to the attention of their supervisors.

Module 4

PART 6. TEMPORARY TRAFFIC CONTROL (TTC)

- 6A. General
- 6B. Fundamental Principles
- 6C. TTC Elements
- 6D. Pedestrian & Worker Safety
- 6E. Flagger Control
- 6F. TTC Zone Devices
- 6G. Type of TTC Zone Activities
- 6H. Typical Applications
- 61. Control of Traffic through Traffic Incident Management Areas

Manual on Uniform Traffic Control Devices

for Streets and Highways

2009 Edition

Including Revision 1 dated May 2012 and Revision 2 dated May 2012

U.S.Department of Transportation Federal Highway Administration PLEASE REFER TO THE MUTCD, DECEMBER 2009 EDITION, PART 6: TEMPORARY TRAFFIC CONTROL (PDF VERSION)

PRESS HERE

Chapter 6A: General

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

Standard:

O2 The needs and control of all road users (motorists, bicyclists, and pedestrians within the highway, or on private roads open to public travel (see definition in Section 1A.13), including persons with disabilities in accordance with the Americans with Disabilities Act of 1990 (ADA), Title II, Paragraph 35.130) through a TTC zone shall be an essential part of highway construction, utility work, maintenance operations, and the management of traffic incidents.

E=Engineering

E=Education

E=**E**nforcement

E=Emergency Management

Temporary Traffic Control Zones Activities: Work Duration

Puerto Rico Transportation Technology Transfer Center

- Long-term

 stationary, work that occupies a location more than 3 days
- Intermediate >> term stationary, work that occupies a location more than one daylight period up to 3 days, or nighttime work lasting more than 1 hour
- Short duration
 work that occupies a location up to 1 hour
- Mobile

 work that moves intermittently or continuously

Manual on Uniform Traffic Control Devices

for Streets and Highways

2009 Edition

Including Revision 1 dated May 2012 and Revision 2 dated May 2012

CHAPTER 6B FUNDAMENTAL PRINCIPLES

CHAPTER 6C
TEMPORARY TRAFFIC
CONTROL ELEMENTS

113

Puerto Rico Transportation Technology Transfer Center

- The needs and control of all road users through a TTC zone shall be an essential part of highway construction, utility work, maintenance operations, and the management of traffic incidents.
- □ Roads users include:

 Before any new detour or temporary route is opened to traffic, all necessary signs shall be in place

 All TTC devices shall be removed as soon as practical (ASAP) when they are no longer needed

When work is suspended for short periods of time, TTC devices that are no longer appropriate shall be removed or covered

- General plans or guidelines should be developed to provide safety for all users...:
 - The basic safety principles governing the design of permanent roadways and roadsides should also govern the design of TTC zones
 - The goal should be to route road users through such zones using roadway geometrics, roadside features, and TTC devices as nearly as possible comparable to those for normal highway situations
 - A TTC plan, in detail appropriate to the complexity of the work project or incident, should be prepared and understood by all responsible parties before the site is occupied

Road user movement should be inhibited as little as practical, based on the following considerations:

Chapter 6B - Fundamental Principles of

Temporary Traffic Control (TTC): Guidance

- a. TTC at work and incident sites should be designed on the assumption that drivers will only reduce their speeds if they clearly perceive a need to do so.
- b. Frequent and abrupt changes in geometrics such as lane narrowing, dropped lanes, or main roadway transitions that require rapid maneuvers, should be avoided.

Provisions should be made for the reasonably safe operation of work, particularly on high-speed, high volume roadways.

Chapter 6B - Fundamental Principles of

Temporary Traffic Control (TTC): Guidance

d. Road users should be encouraged to use alternative routes that do not include TTC zones.

 Bicyclists and pedestrians, including those with disabilities, should be provided with access and reasonably safe passage through the TTC zone.

Roadway occupancy should be scheduled during offpeak hours and, if necessary, night work should be considered.

Chapter 6B - Fundamental Principles of

Temporary Traffic Control (TTC): Guidance

g. Early coordination with officials having jurisdiction over the affected cross streets and providing emergency services should occur before roadway or ramp closings.

To provide acceptable levels of operations, routine day and night inspections of TTC elements should be performed...:

Temporary Traffic Control (TTC): Guidance

Chapter 6B - Fundamental Principles of

- Individuals who are knowledgeable (i.e., trained and/or certified) in the principles of proper TTC should be assigned responsibility for safety in TTC zones.
 - All TTC devices of the project are reasonably consistent with the TTC plan, and
 - are effective in providing reasonably safe conditions for motorists, bicyclists, pedestrians, and workers.

As the work progresses, TTC and/or working conditions should be modified in order to provide reasonably safe and efficient road user movement and to provide worker safety.

Chapter 6B - Fundamental Principles of

Temporary Traffic Control (TTC): Guidance

The individual responsible for TTC should have the authority to halt work until applicable or remedial safety measures are taken.

TTC zones should be carefully monitored under varying conditions of road user volumes, light, and weather to check that applicable TTC devices are effective, clearly visible, clean, and in compliance with the TTC plan.

Chapter 6B - Fundamental Principles of

Temporary Traffic Control (TTC): Guidance

d. When warranted, an engineering study should be made (in cooperation with law enforcement officials) of reported crashes occurring within the TTC zone. Crash records in TTC zones should be monitored to identify the need for changes in the TTC zone.

- Reduced speed limits should be used only in the specific portion of the TTC zone where conditions or restrictive features are present.
- Frequent changes in the speed limit should be avoided.

Chapter 6C - Temporary Traffic Control

(TTC) Elements: Guidance

- A TTC plan should be designed so that vehicles can reasonably safely travel through the TTC zone with a speed limit reduction of no more than 16 km/h (10 mph).
 - A higher reduction in the speed limit should be used only when required by restrictive features in the TTC zone.

Where restrictive features justify a speed reduction of more than 16 km/h (10 mph), additional driver notification should be provided.

Chapter 6C - Temporary Traffic Control

TC) Elements: Guidance

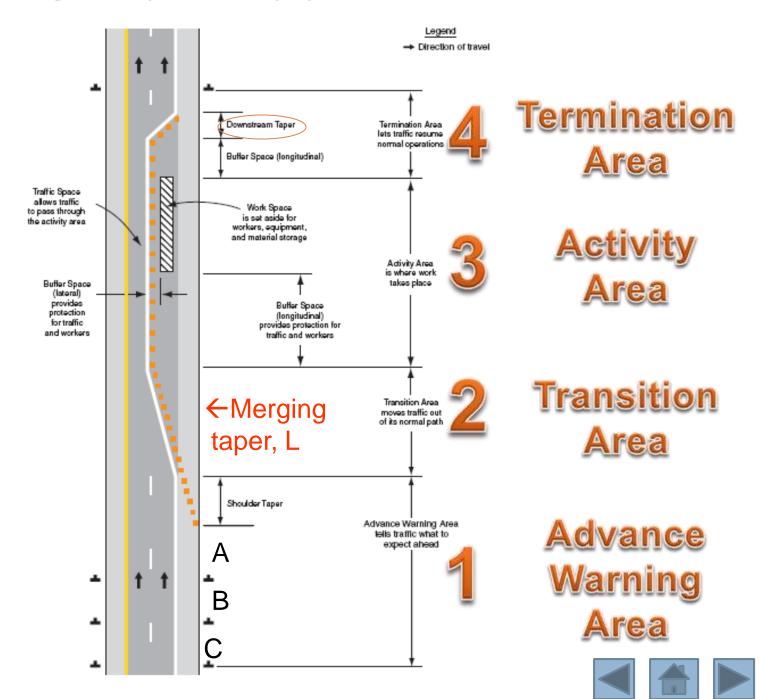

- The speed limit should be stepped down in advance of the location requiring the lowest speed, and additional TTC warning devices should be used.
- Reduced speed zoning (lowering the regulatory speed limit) should be avoided as much as practical because drivers will reduce their speeds only if they clearly perceive a need to do so.

Figure 6C-1. Component Parts of a Temporary Traffic Control Zone

Components of Temporary Traffic Control (TTC) Zones

1. Advance Warning Area

Section of highway where road users are informed about the upcoming work zone or incident area.

Option

May vary from a single sign or high-intensity rotating, flashing, oscillating, or strobe lights on a vehicle to a series of signs in advance of the TTC zone activity area.

Table 6C-1. Suggested Advance Warning Sign Spacing, MUTCD 2003 Edition (metric units and formulas were eliminated)

12		Puerto Rico Trans	portation Technol	ogy Transfer Center
		Α	В	С
	Urban (low speed)*	30 (100)	30 (100)	30 (100)
	Urban (high speed)*	100 (350)	100 (350)	100 (350)
	Rural	150 (500)	150 (500)	150 (500)
	Expressway / Freeway	300 (1,000)	450 (1,500)	800 (2,640)

Speed category to be determined by highway agency

** Distances are shown in meters (feet). The column headings A, B, and C are the dimensions shown in Figures 6H-1 through 6H-46. The A dimension is the distance from the transition or point of restriction to the first sign. The B dimension is the distance between the first and second signs. The C dimension is the distance between the second and third signs. (The third sign is the first one in a three-sign series encountered by a driver approaching a TTC zone.)

 $V \le 40 \text{ mph} = \text{Low Speed}$

V ≥ 45 mph = High Speed

Table 6C-1. Recommended Advance Warning Sign Minimum Spacing

Table 6C-1. Recommended Advance Warning Sign

Minimum Spacing, MUTCD, December 2009 Edition

Dood Type	Distance Between Signs**		
Road Type	Α	В	С
Urban (low speed)*	100 feet	100 feet	100 feet
Urban (high speed)*	350 feet	350 feet	350 feet
Rural	500 feet	500 feet	500 feet
Expressway / Freeway	1,000 feet	1,500 feet	2,640 feet

Speed category to be determined by the highway agency

** The column headings A, B, and C are the dimensions shown in Figures 6H-1 through 6H-46. The A dimension is the distance from the transition or point of restriction to the first sign. The B dimension is the distance between the first and second signs. The C dimension is the distance between the second and third signs. (The "first sign" is the sign in a three-sign series that is closest to the TTC zone. The "third sign" is the sign that is furthest upstream from the TTC zone.)

Guidance on Typical Distances for Advance Warning Signs

Puerto Rico Transportation Technology Transfer Center

- Typical distances for placement of advance warning signs on should be longer because drivers are conditioned to uninterrupted flow.
- Advance warning sign placement should extend on these facilities as far as 800 m (0.5 mi) or more.
- Rural highways (normally characterized by higher speeds)
 - Effective placement of the first warning sign in meters (feet) should be from 1.5 to 2.25 times the speed limit in km/h (8 to 12 times the speed limit in mph).
 - □ Since two or more advance warning signs are normally used for these conditions, the advance warning area should extend 450 m (1,500 ft) or more for open highway conditions (see Table 6C-1).

Guidance on Typical Distances for Advance Warning Signs

Puerto Rico Transportation Technology Transfer Center

- Effective placement of the first warning sign in meters (feet) should range from 0.75 to 1.5 times the speed limit in km/h (4 to 8 times the speed limit in mph).
- When a single advance warning sign is used (such as in low-speed residential streets), the advance warning area can be as short as 30 m (100 ft).
- When two or more advance warning signs are used on higher-speed streets (such as major arterials) see Table 6C-1.

Components of Temporary Traffic Control (TTC) Zones

2. Transition Area

- Support
 - The section of highway where road users are redirected out of their normal path. Usually involve strategic use of tapers.
 - In mobile operations, the transition area moves with the work space.
- Standard
 - When redirection of the road users' normal path is required, they shall be channelized from the normal path to a new path

Components of Temporary Traffic Control (TTC) Zones

3. Activity Area

Puerto Rico Transportation Technology Transfer Center

Support

- The section of the highway where the work activity takes place.
- It is comprised of the work space, the traffic space, and the buffer space.
 - Traffic space = portion of the highway in which road users are routed through the activity area.
 - Buffer space = lateral and/or longitudinal area that separates road user flow from the work space or an unsafe area, and might provide some recovery space for an errant vehicle. (For recommended longitudinal lengths, see Table 6C-2)

Table 6C-2. Stopping Sight Distance as a Function of Speed, MUTCD 2003 Edition

132

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

Speed* (km/h)	Distance (m)
30	35
40	50
50	65
60	85
70	105
80	130
90	160
100	185

220

250

110

120

Speed* (mph)	Distance (ft)
20	115
25	155
30	200
35	250
40	305
45	360
50	425
55	495
60	570
65	645
70	730
75	820

^{*} Posted speed, off-peak 85th-percentile speed prior to work starting, or the anticipated operating speed

Table 6C-2: Stopping Sight Distance as a Function of Speed, MUTCD December 2009 Edition

Puerto Rico Transportation Technology Transfer Center

Table 6C-2. Stopping Sight Distance as a Function of Speed

Speed*	Distance
20 mph	115 feet
25 mph	155 feet
30 mph	200 feet
35 mph	250 feet
40 mph	305 feet
45 mph	360 feet
50 mph	425 feet
55 mph	495 feet
60 mph	570 feet
65 mph	645 feet
70 mph	730 feet
75 mph	820 feet

^{*} Posted speed, off-peak 85th-percentile speed prior to work starting, or the anticipated operating speed

Components of Temporary Traffic Control (TTC) Zones

4. Termination Area

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

Standard

Shall be used to return road users to their normal path.

Shall extend from the downstream end of the work area to the last TTC device, such as END ROAD WORK signs, if posted.

Components of Temporary Traffic Control (TTC) Zones

6C.08 - Tapers

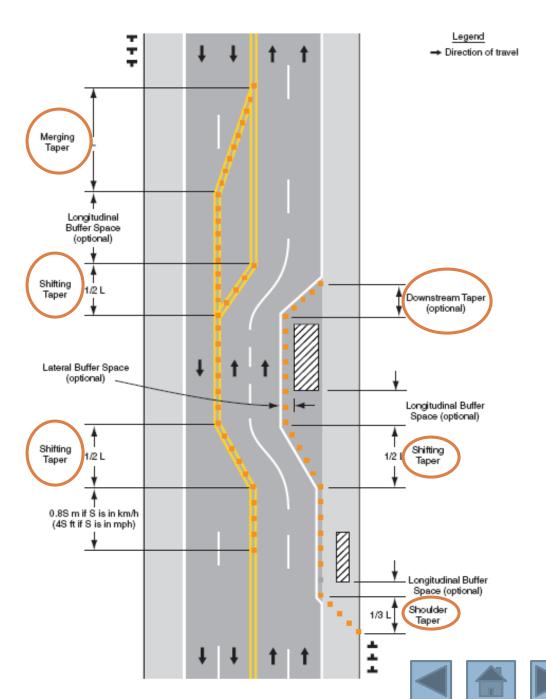
PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

Option

- May be used in both the transition and termination areas.
- Whenever tapers are to be used in close proximity to an interchange ramp, crossroads, curves, or other influencing factors, the length of the tapers may be adjusted.

Support

Tapers are created by using a series of channelizing devices and/or pavement markings to move traffic out of or into the normal path.



Taper Types

- Merging
- Shifting
- > Shoulder
- Downstream

Taper Length Criteria, MUTCD 2003 Edition

Table 6C-3. Taper Length Criteria for Temporary Traffic Control Zones

Type of Taper	Taper Length (L)*
Merging Taper	at least L
Shifting Taper	at least 0.5L
Shoulder Taper	at least 0.33L
One-Lane, Two-Way Traffic Taper	30 m (100 ft) maximum
Downstream Taper	30 m (100 ft) per lane

The maximum distance in meters (feet) between devices in a taper should not exceed 0.2 times the speed limit in km/h (1.0 times the speed limit in mph).

Puerto Rico Transportation Technology Transfer Center

Table 6C-3. Taper Length Criteria for Temporary Traffic Control Zones

Type of Taper	Taper Length
Merging Taper	at least L
Shifting Taper	at least 0.5 L
Shoulder Taper	at least 0.33 L
One-Lane, Two-Way Traffic Taper	50 feet minimum, 100 feet maximum
Downstream Taper	50 feet minimum, 100 feet maximum

Note: Use Table 6C-4 to calculate L

Formulas to Determine Taper Lengths, MUTCD 2003 Edition

Puerto Rico Transportation Technology Transfer Center

Table 6C-4. Formulas for Determining Taper Lengths

Speed Limit (S)	Taper Length (L) Meters
60 km/h or less	$L = \frac{WS^2}{155}$
70 km/h or more	L = WS

Speed Limit (S)	Taper Length (L) Feet
40 mph or less	$L = \frac{WS^2}{60}$
45 mph or more	L = WS

Where: L = taper length in meters (feet)

W = width of offset in meters (feet)

S = posted speed limit, or off-peak 85th-percentile speed prior to work starting, or the anticipated operating speed in km/h (mph)

Formulas to Determine Taper Lengths, MUTCD 2009 Edition

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

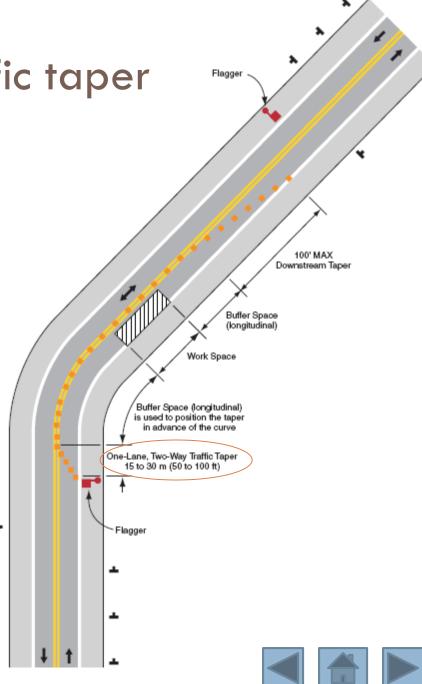
Table 6C-4. Formulas for Determining Taper Length

Speed (S)	Taper Length (L) in fee	
40 mph or less	$L = \frac{WS^2}{60}$	
45 mph or more	L= WS	

Where: L = taper length in feet

W = width of offset in feet

S = posted speed limit, or off-peak 85th-percentile speed prior to work starting, or the anticipated operating speed in mph


Section 6C.10

One-lane, two-way traffic taper

Standard

When traffic in both directions must use a single lane for a limited distance, movements from each end shall be coordinated.

Minimum L = 50 ft Maximum L = 100 ft

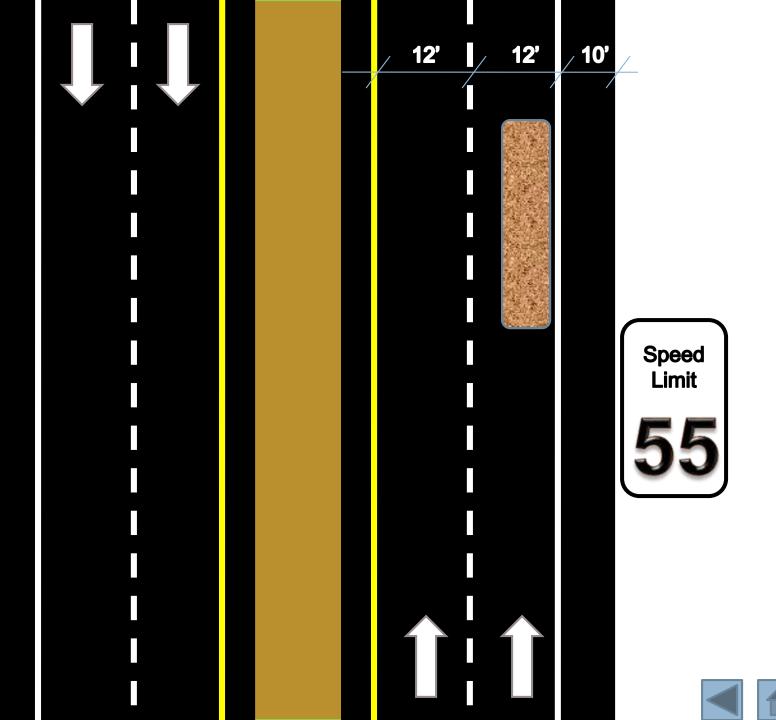
Module 5

Typical Applications of Activities Associated with TTC (Please refer to PDF version)

Press Here

Example # 1: TTC Four (4) Lane Divided Highway TA-33 - Stationary Lane Closure on a Divided Highway

Puerto Rico Transportation Technology Transfer Center

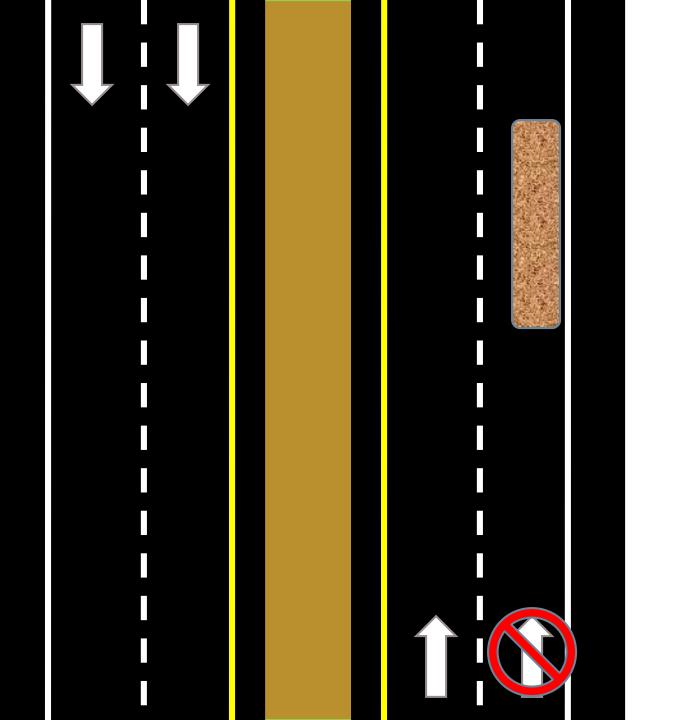

Given:

- 4 lane rural highway (2 lanes per direction)
- Posted speed limit or 85th percentile off-peak speed, S = 55 mph
- \square Lane width, W = 12 ft / lane (3.65 m/lane)
- \square Outside shoulder width, w = 10 ft (3 m)
- \square Work space = 0.5 mile (0.8 km)
- Duration of work = 2 months
- □ Traffic = 40,000 vpd

Example # 1: TTC 4 Lane Divided Highway

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

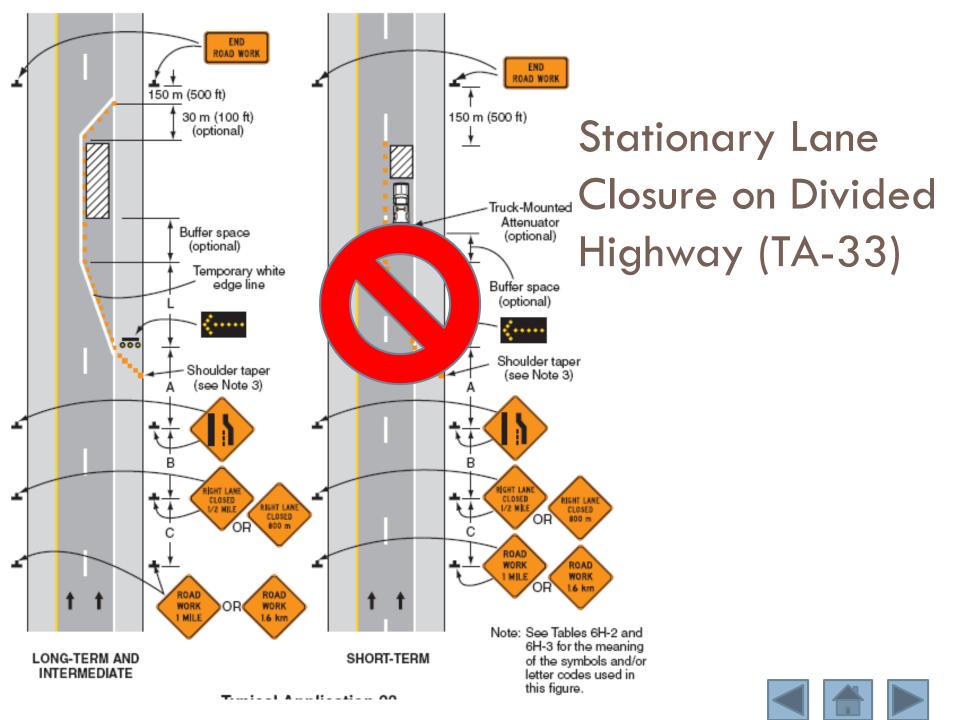
Required:


- Length of advance warning area
- Length of shoulder taper
- 3. Length of transition area
- Length of activity area
- Length of longitudinal buffer
- Length of termination area
- 7. Minimum number of channelizing devices in transition area

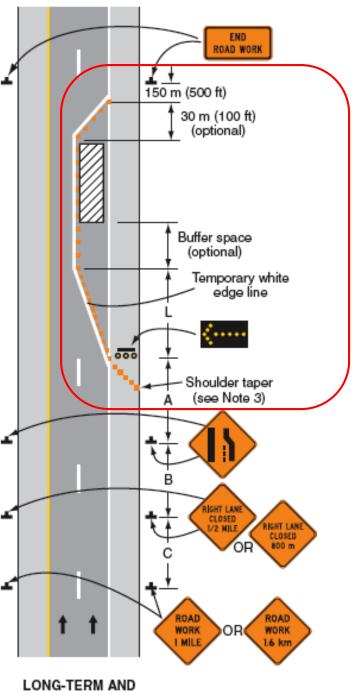
Calculate using MUTCD Part 6 Standards and Guidelines

Aspects to Consider in Highway Work Zones

- Type of work activity
- Location and duration (short-term, intermediateterm, long-term)
- Daytime / Nighttime / Both periods
- Roadway type / functional classification
- □ Traffic volume
- Speed differential
- Hazard potential
 - Prevention
 - Standard of care


Puerto Rico Transportation Technology Transfer Center

Typical Application Description Work Within the Traveled Way of Multi-lane, Nonaccess Controlled Highways (see Section 6G.12) Interior Lane Closure on Multi-lane Street TA-30 Lane Closure on Street with Uneven Directional Volumes TA-31 Half Road Closure on Multi-lane, High-Speed Highway TA-32 Lane Closure on Divided Highway TA-33 Lane Closure with Temporary Traffic Barrier Mobile Operation on Multi-lane Road TA-35



TA-33

Termination Area

Activity Area

Transition Area

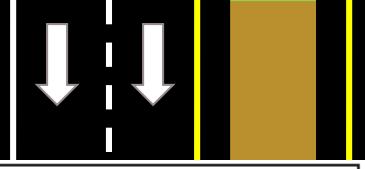
151

Transition Area – Shoulder taper & Merging Taper

70

Puerto Rico Transportation Technology Transfer Center

Table 6C-3. Taper Length Criteria for Temporary Traffic Control Zones


Type of Taper	Taper Length (L)*		
Merging Taper	at least L		
Shifting Taper	at least 0.5L		
Shoulder Taper	at least 0.33L		
One-Lane, Two-Way Traffic Taper	30 m (100 ft) maximum		
Downstream Taper	30 m (100 ft) per lane		

Maximum distance in meters (feet) between devices in a taper should not exceed 0.2 times the speed limit in km/h (1.0 times the speed limit in mph).

Speed Limit (S)	Taper Length (L) Feet		
40 mph or less	$L = \frac{WS^2}{60}$		
45 mph or more	L = WS		

L = taper length (feet)

W = width of offset (feet)

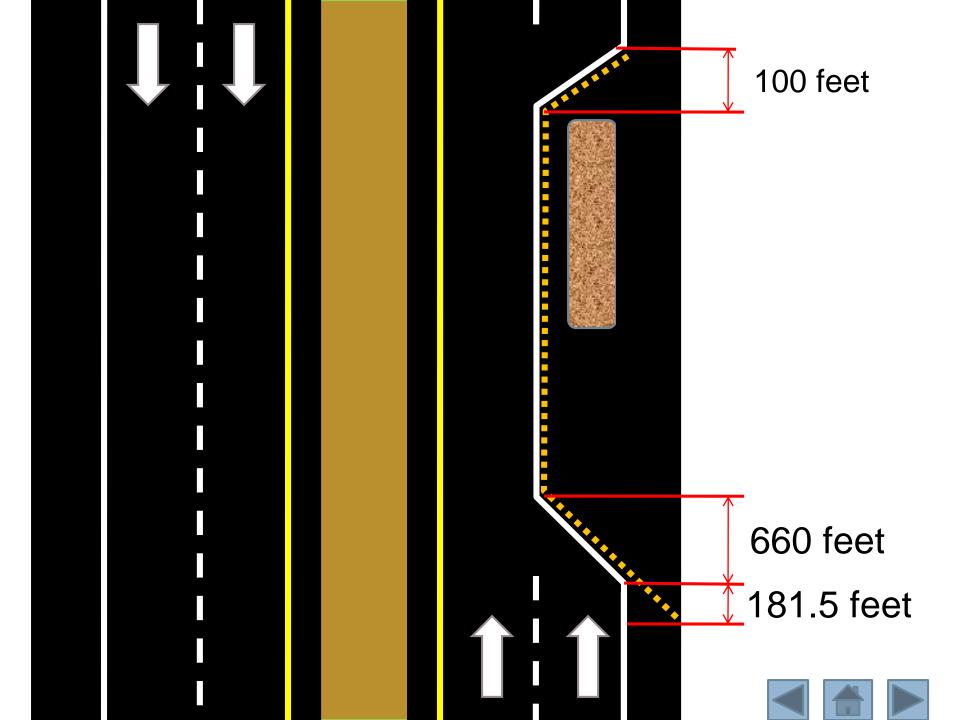
S = posted speed limit (mph) 85th perc. speed anticipated op. speed Downstream taper

Merging taper = L

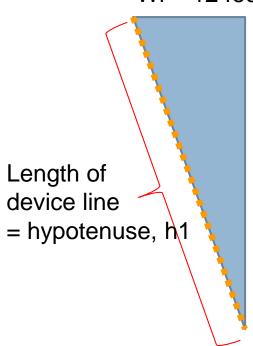
Shoulder taper = 0.33L

Merging _taper

$$L = W \cdot S = 12 \times 55 = 660$$
 feet


$$L = W \cdot S = 10 \times 55 = 550 feet$$

$$0.33 \cdot L = 0.33 \times 550 = 181.5$$
 feet


Amount of Channelizing Devices in **Transition Area**

155

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

Shoulder width, WI = 12 feet

Length of merging taper, Lm = 660 feet

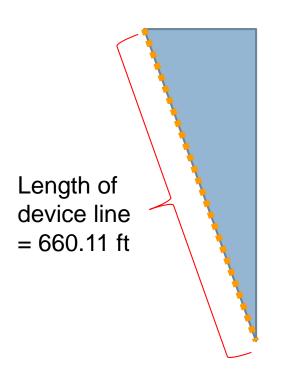
Shoulder width, Ws = 10 pies

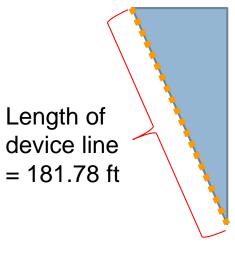
Length of device line = hypotenuse, h2

Length of merging taper, Ls = 181.5 feet

$$h_1 = \sqrt{W_l^2 + L_m^2} = \sqrt{12^2 + 660^2} = 660.11 \text{ ft}$$

$$h_2 = \sqrt{W_s^2 + L_s^2} = \sqrt{10^2 + 181.5^2} = 181.78 ft$$



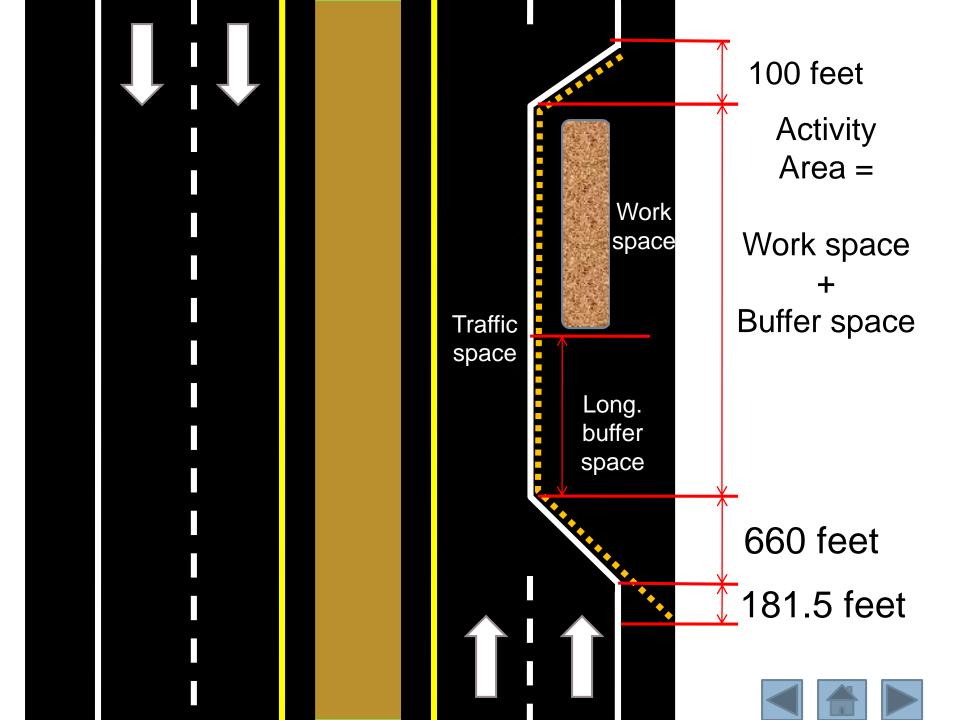


Amount of Channelizing Devices in Transition Area

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

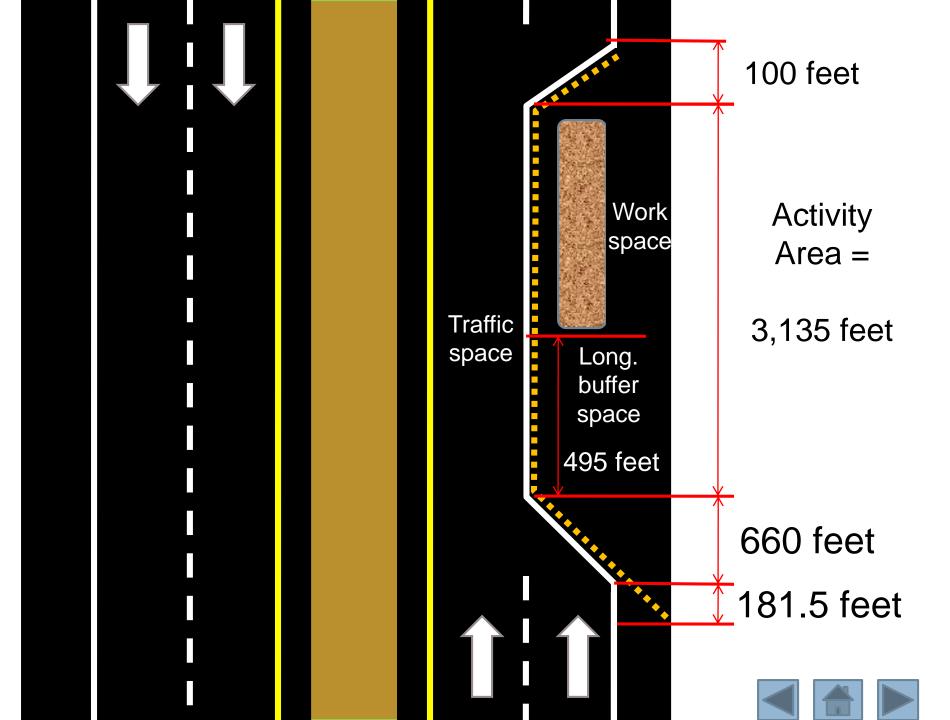
Maximum distance between pairs of devices = 55 feet

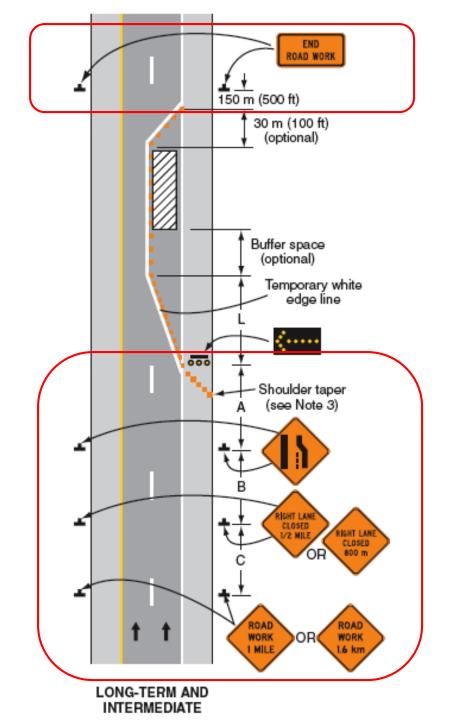
Minimum amount of devices =


Merging taper (660.11 / 55) + 1 = 13 devices

Shoulder taper (181.78 / 55) + 1 = 4 devices

Length of Activity Area


■ Work space = 2640 feet


□ Longitudinal buffer = 495 feet

- Length of Activity Area
- = 2640 + 495 = 3,135 feet

Speed* (mph)	Distance (ft)	
20	115	
25	155	l
30	200	l
35	250	l
40	305	l
45	360	l
50	425	L
55	495	
60	570	
65	645	
70	730	
75	820	

^{*} Posted speed, off-peak 85th-percentile speed prior to work starting or the anticipated operating speed

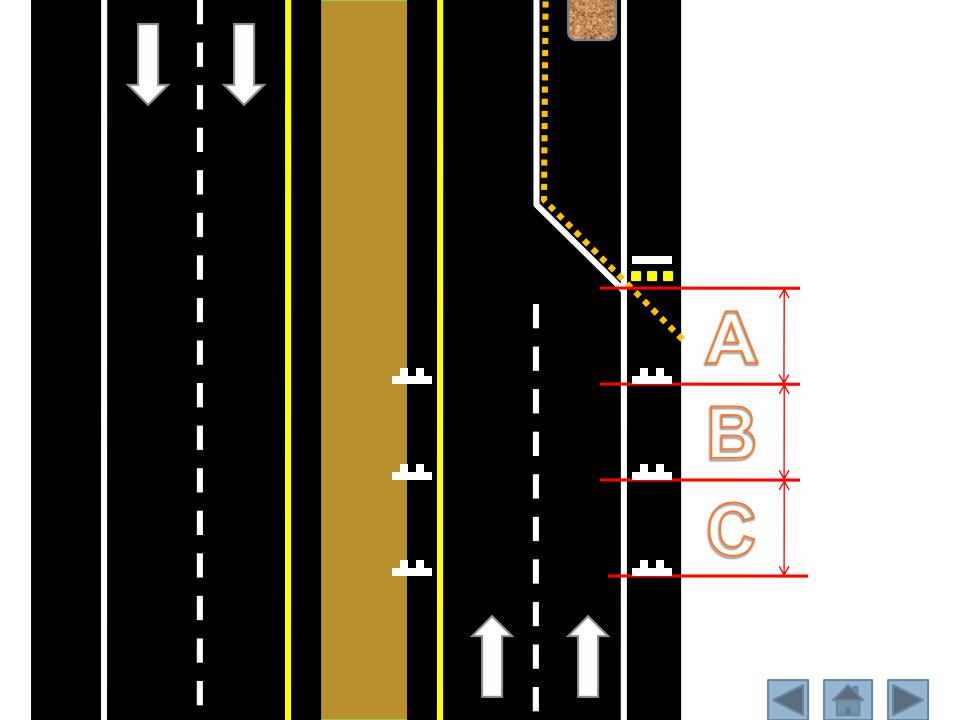
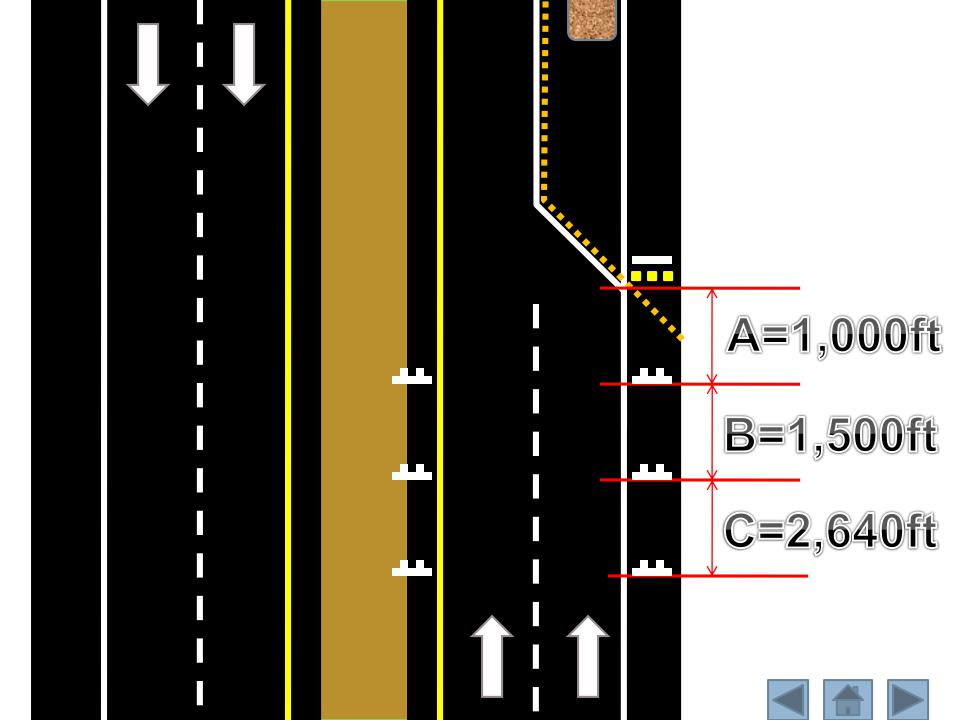
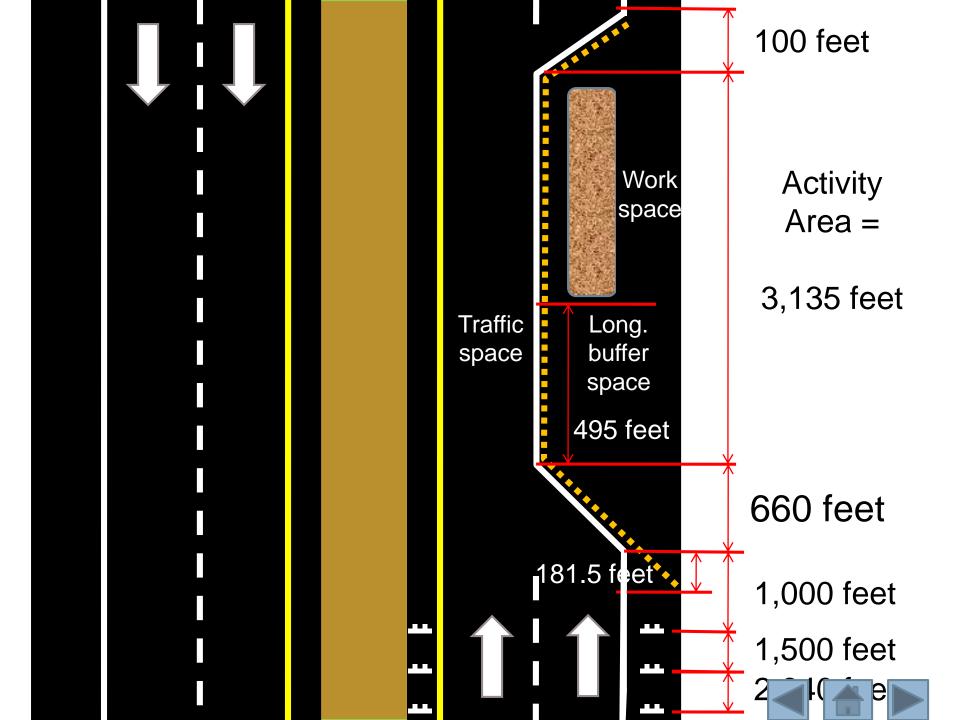


Table 6C-1. Suggested Advance Warning Sign Spacing

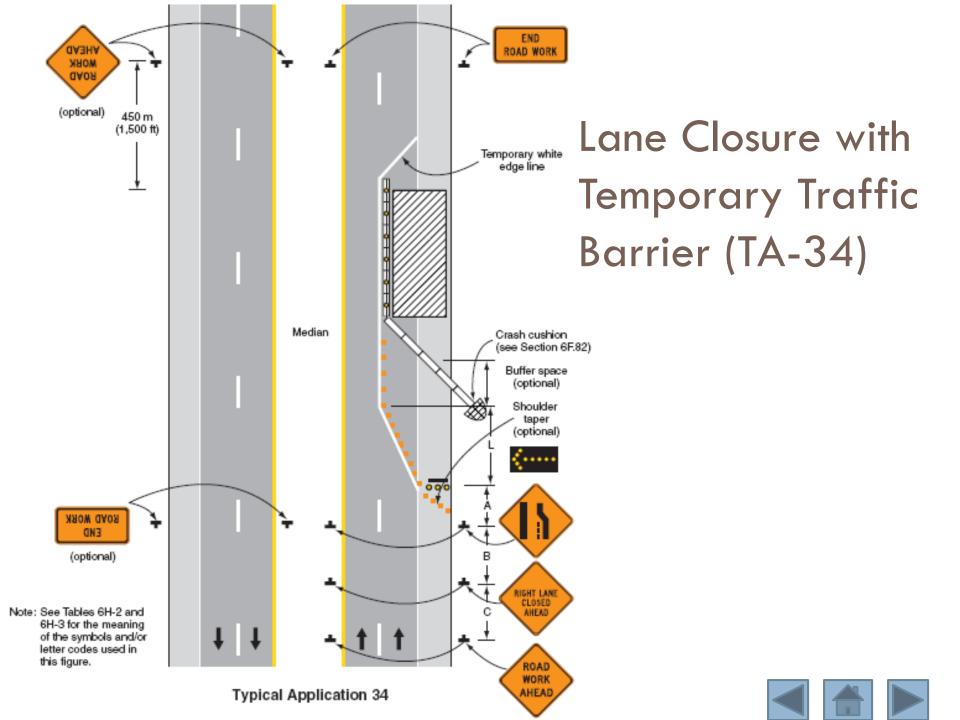
1	62	Puerto Rico Trans	SPORTATION TECHNOL	OGY TRANSFER CENTER	
		A	В	С	
	Urban (low speed)*	30 (100)	30 (100)	30 (100)	
	Urban (high speed)*	100 (350)	100 (350)	100 (350)	
	Rural	150 (500)	150 (500)	150 (500)	
	Expressway / Freeway	300 (1,000)	450 (1,500)	800 (2,640)	

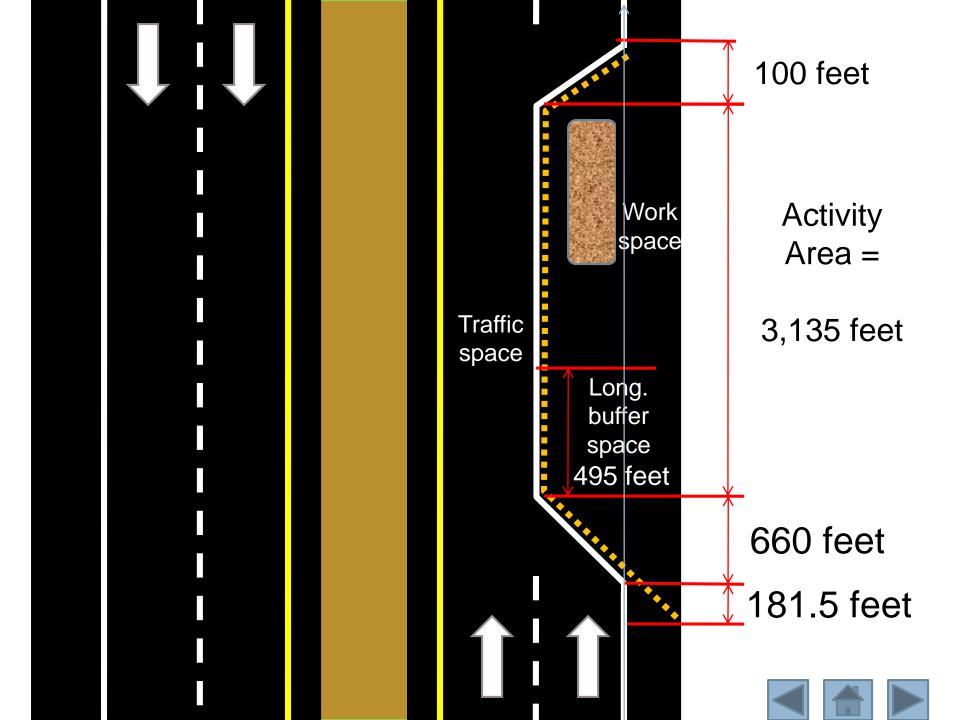

Distancias en metros (pies)

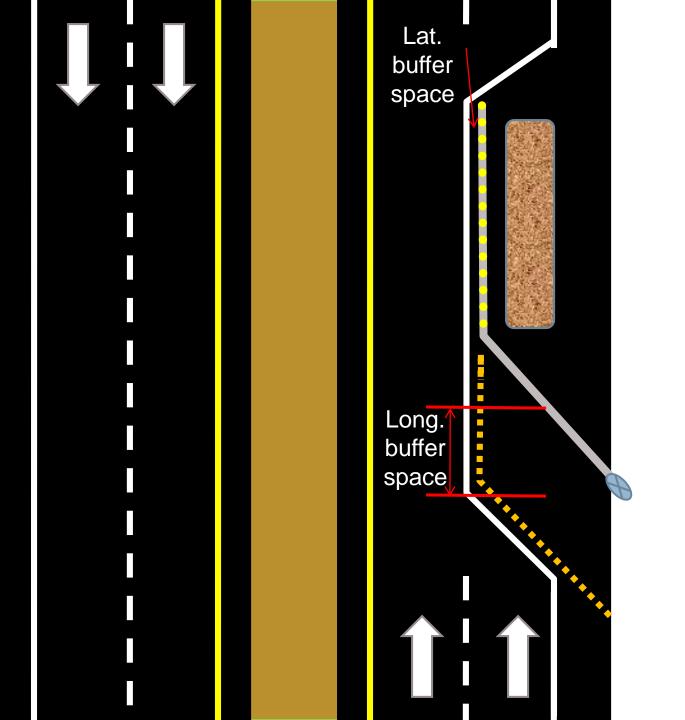

** Distances are shown in meters (feet). The column headings A, B, and C are the dimensions shown in Figures 6H-1 through 6H-46. The A dimension is the distance from the transition or point of restriction to the first sign. The B dimension is the distance between the first and second signs. The C dimension is the distance between the second and third signs. (The third sign is the first one in a three-sign series encountered by a driver approaching a TTC zone.)

 $V \le 40 \text{ mph} = \text{Low Speed}$

V ≥ 45 mph = High Speed


Speed category to be determined by highway agency





What if we want to include a temporary barrier?

CHAPTER 6D. PEDESTRIAN AND WORKER SAFETY

Pedestrian Considerations

Standards

Puerto Rico Transportation Technology Transfer Center

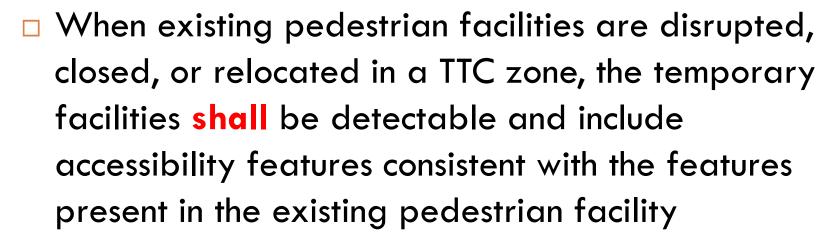
- TTC provisions for pedestrian and worker safety... shall be applied by knowledgeable persons after appropriate evaluation and engineering judgment.
- TTC devices used to delineate a TTC zone pedestrian walkway shall be crashworthy and, when struck by vehicles, present a minimum threat to pedestrians, workers, and occupants of impacting vehicles.

Pedestrians should be provided with a reasonably safe, convenient, and accessible path that replicates as nearly as practical the most desirable characteristics of the existing sidewalk(s) or footpath(s).

- Pedestrians should not be led into conflicts with
 - work site vehicles, equipment, and operations
 - vehicles moving through or around the work site.

Puerto Rico Transportation Technology Transfer Center

- Special consideration to special groups
 - Children
 - Older persons
 - People with disabilities


These pedestrians need a clearly delineated and usable travel path

Puerto Rico Transportation Technology Transfer Center

Pedestrian Considerations

Standard

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

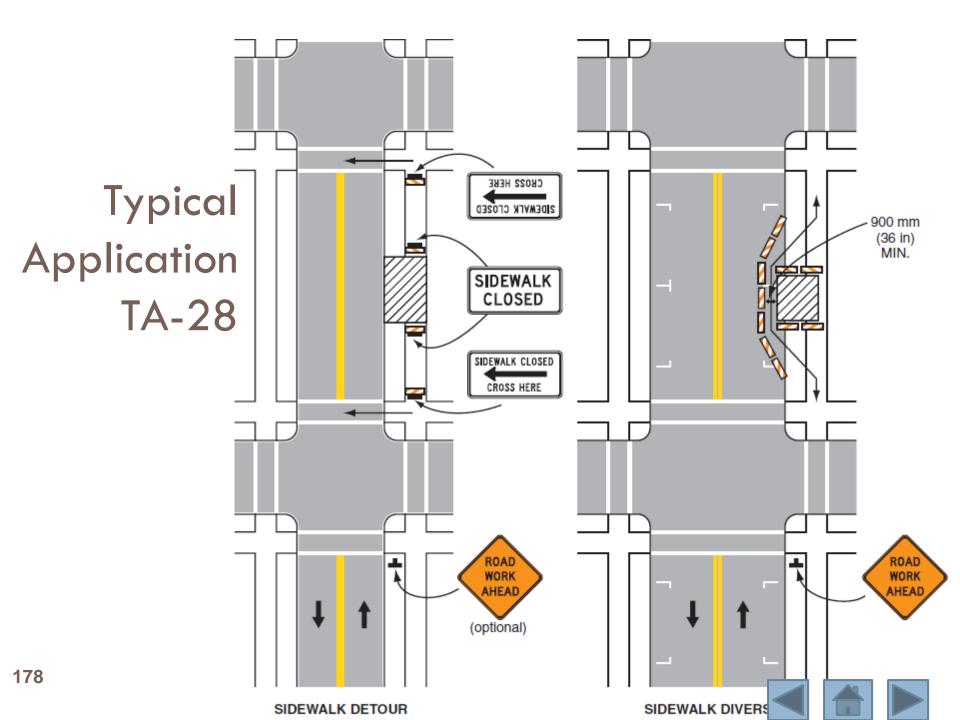
- Advance notification of sidewalk closures shall be provided to the maintaining agency.
 - Alternative access clearly indicated (TA -28)
- Where pedestrians with visual disabilities normally use the closed sidewalk, a barrier that is detectable by a person with a visual disability traveling with the aid of a long cane shall be placed across the full width of the closed sidewalk.

Issues for Pedestrians with Mobility Disabilities

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

Issues for Pedestrians with Visual

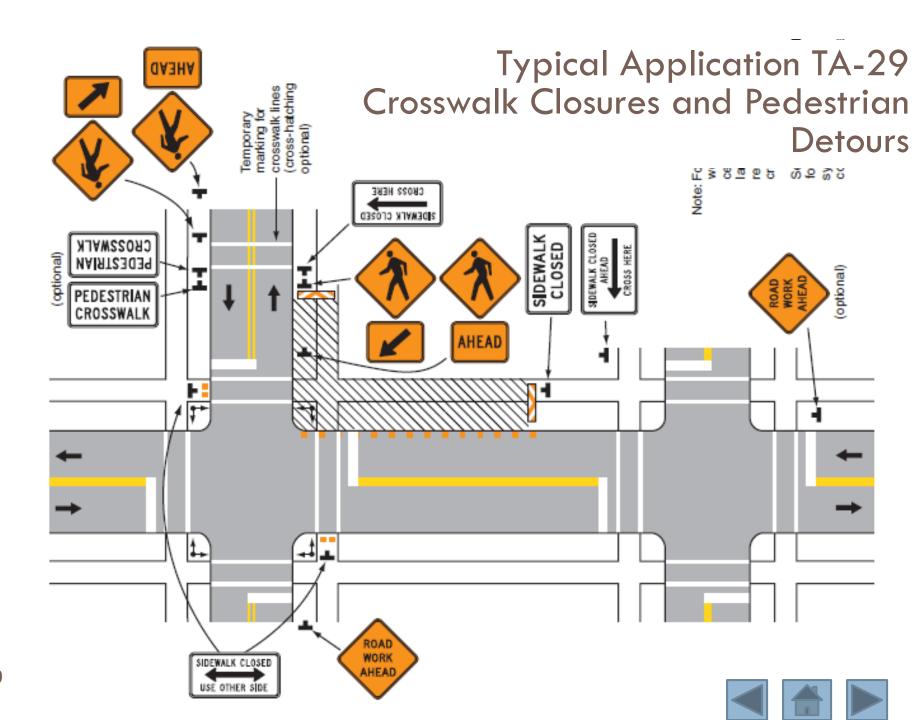
Disabilities



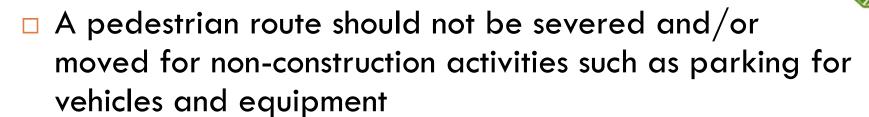
Issues for Pedestrians with Visual

Disabilities

Typical Application 28 - Sidewalk Closures and Bypass Sidewalks


PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

- Where high speeds are anticipated, a temporary traffic barrier and, if necessary, a crash cushion should be used to separate the temporary sidewalks from vehicular traffic.
- For nighttime closures, Type A Flashing warning lights may be used on barricades that support signs and close sidewalks.
- Type C Steady-Burn or Type D 360-degree Steady-Burn warning lights may be used on channelizing devices separating the temporary sidewalks from vehicular traffic flow.


- Where pedestrians who have visual disabilities encounter work sites that require them to cross the roadway to find an accessible route, instructions should be provided using an audible information device
 - Passive pedestrian actuation
 - Continuous message
 - Button activated message
- Spoken message artifacts not needed if the alternative route is evident to visually-disabled pedestrians

Pedestrian Considerations

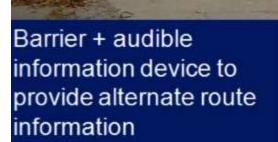
- When crossing the road is necessary, direct pedestrians with advance signing placed at intersections (rather than midblock locations)
- Tape, rope, or plastic chain strung between TTC devices are not detectable and should not be used as a control for pedestrian movements
- Regularly inspect the activity area so that effective pedestrian TTC is maintained

M4-9c

Issues for Pedestrians with Visual

Disabilities

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

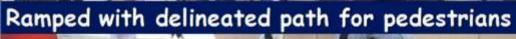


Accessible Design for the Blind

Information in usable formats

INFORMATION CENTER

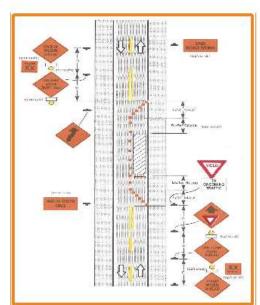
Extent of the detour...where does it start...and end?


Free of hazardous protruding objects?

- Need to provide room for people traveling in opposite directions to pass each other
 - Should be at least five feet wide
 - Six feet more comfortable

Worker Safety Tips

Operator Safety ROADWAY SAFETY*



How Can We Be Safe in the Work Zone?

The operator has special responsibilities.

Know the job

- Know the work zone and your position in it
- Know the internal traffic control plan
- Use designated equipment routes and areas
- Identify rollover hazards such as unleveled areas, embankments, unstable soil
- If you must move cones or barricades, return them to the original positions as soon as possible

Safety Considerations for Workers

Training

- How to work next to motor vehicle traffic in a way that minimizes their vulnerability
- TTC techniques, device usage, and placement

Safety Apparel

- Wear high-visibility safety apparel meeting the requirements of ANSI 107-1999 standard performance for Class 1, 2, or 3 risk exposure
- Assign a competent person as responsible for the worker safety plan who should make the selection of the appropriate class of garment

Temporary Traffic Barriers: should be placed along the work space depending on factors such as lateral clearance of workers from adjacent traffic, speed of traffic, duration and type of operations, time of day, and volume of traffic

Safety Considerations for Workers

Speed Reduction: mainly through regulatory speed zoning, funneling, lane reduction, or the use of uniformed law enforcement officers or flaggers, should be considered

Safety Considerations for Workers

Activity Area: minimize backing-up maneuvers of construction vehicles should be considered

Worker Safety Planning

- Designate competent person to conduct a basic hazard assessment for the work site and job classifications required in the activity area
- This safety professional should determine whether engineering, administrative, or personal protection measures should be implemented.
- Plan should be in accordance with the Occupational Safety and Health Act of 1970

Shadow Vehicle

Equipped with appropriate lights and warning signs

Additional Safety Elements for Workers

- May be used to protect the workers from impacts by errant vehicles
- May be equipped with a rear-mounted impact attenuator
- 2. Road Closure: when alternative routes are available

3. Law Enforcement Use

For relatively short activities, units may be stationed to heighten the awareness of passing vehicular traffic and to improve safety through the TTC zone

- 4. Lighting: for nighttime activities
 - Iluminar área de trabajo para operaciones nocturnas

Additional Safety Elements for Workers

5. Special Devices

- Rumble strips
- Changeable message signs
- Hazard identification beacons
- Flags
- Warning lights
- Intrusion warning devices

R ZO

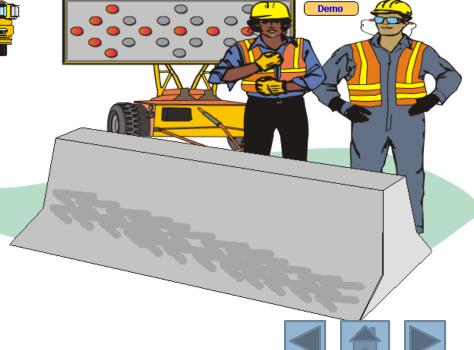
Operator Safety ROADWAY SAFETY*

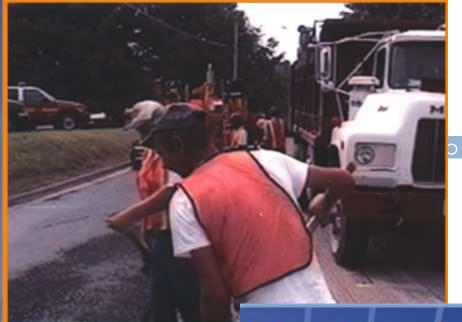
How Can We Protect Other Workers? Always keep other workers in mind.

On the worksite

- Know the locations of other workers around you at all times
- Set up a means of communication with workers around you such as flaggers, grade checkers
- Never allow other workers to ride on equipment
- Where possible, provide barriers between workers and equipment
- Avoid excessive speeds and dangers caused by hills, obstacles, curves

Runovers/Backovers ROADWAY SAFETY*

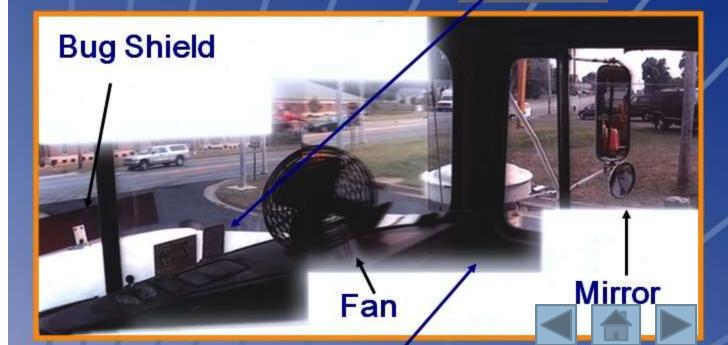



Can We Be Safe Near Equipment/Traffic?

Being struck is the biggest danger in road work.

Workers on foot must

- Remain alert at all times
- Check surroundings often, listen for warnings
- Keep a safe distance from traffic
- Stay behind protective barriers where possible
- Look out for each other, warn coworkers



View from the Street

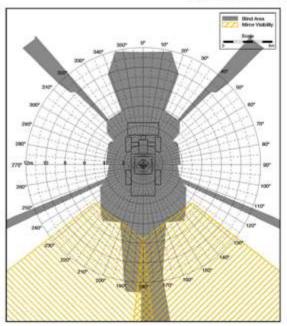
d Rico Transportation Technology Transfer Center

View from Inside the Cab Stickers

Blind Area Mapping www.cdc.gov/niosh/topics/highwayworkzones

197

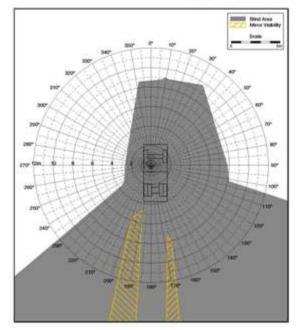
PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER



Caterpiller Inc. Contract # 200-2002-00503 FO Box 1873 Pouls, Illinois 61654-1873

Blind Area Diagram for Construction Vehicle - Ground Plane

Loader (Manufacturer and Model)	Komatsu WA 480
GVW	54,980 lb
Sorial #	WA480 H50074
Machine Dimensions	10' 5" wide 30' 0" long
Operator Enclosure	Closed ROPS
Attachments	None
Other Information	None
Measurement Technique	Physical



Cat orgeller line. Contract # 200-2002-00363 #O Stor, 1873 Poots, Ellinois 61636-1875

Blind Area Diagram for Construction Vehicle - Ground Plane

Dump Truck (Manufacturer and Model)	GMC 7000
GVW	28,000 lb
Serial #	1GDL7D1B7KV500643
Machine Dimensions	96" wide 230" long
Operator Enclosure	Closed ROPS
Attachments	None
Other Information	None
Measurement Technique	Physical

43

Worker Safety Tips

Puerto Rico Transportation Technology Transfer Center

Runovers/Backovers **ROADWAY SAFETY**

What About Construction Equipment? Treat equipment and vehicles with caution.

Around equipment, vehicles

- Stay out of "blind spots"
- Communicate with operators by radio and/or eye contact
- Don't approach until you communicate with operator and he/she acknowledges you
- Stay outside a "safety circle" around equipment
- Stay clear of vehicles, know traffic control plan
- Use spotters when you must work with your back to equipment or traffic

Nighttime Work Activities

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

Night Work ROADWAY SAFETY

What Are the Special Challenges?

Night operations change the work environment.

On the worksite

- Poor visibility for motorists
- Poor visibility for workers
- Communication between shifts
- Impaired or drowsy drivers

Physical and social disruptions

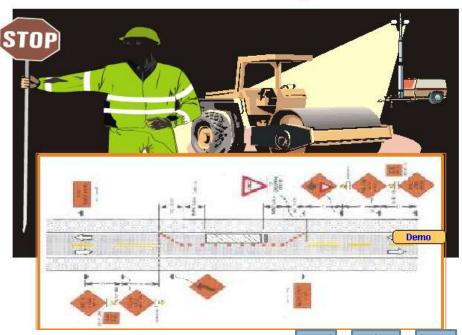
- Sleep disruption
- Risk of injury from drowsiness
- Impaired family or social relationships

Nighttime Work Activities

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

Night Work ROADWAY SAFETY*

How Can We Protect Ourselves at Night?


Use SPECIAL PRECAUTIONS at the site for night work.

Increase visibility

- Retro-reflective clothing
- Flashing lights on body/clothing
- Retro-reflective tape on equipment
- Good work area lighting

Know your surroundings

- Vehicle and equipment paths
- Assigned work areas
- Safe paths to/from work locations
- On foot, watch out for equipment
- On equipment, watch for workers

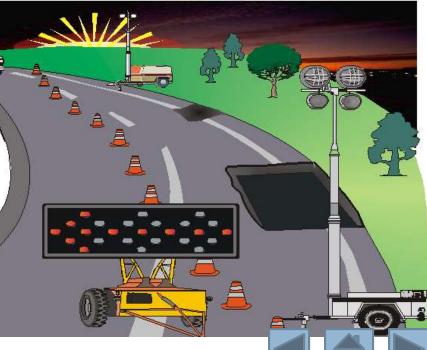
Nighttime Work Activities

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

Night Work ROADWAY SAFETY

How Can We Protect Ourselves at Night?

Use SPECIAL PRECAUTIONS at the site for night work.


Provide clear signage

- Position signs for best visibility
- Use changing message/arrow signs
- Space drums, cones closer
- Proper lighting, contrast work lights from warning lights

Inspect traffic control setup

- Test drive to find problems
- Inspect frequently

Temporary Lighting for Night Work

- Good lighting is essential
 - Safety of workers
 - Quality of work
 - Higher productivity and morale
 - Glare control
- Fixed roadway lighting provided less than 20 lux (2 fc)

- NCHRP 498 recommendations
 - Level I 54 lux (5 fc) general illumination, all areas
 - Level II 108 lux (10 fc) - paving, milling, equipment areas
 - Level III 215 lux (20 fc) - mechanical, electrical, detail work

One light tower for $\frac{1}{2}$ mile long work area... enough?

203

Puerto Rico Transportation Technology Transfer Center

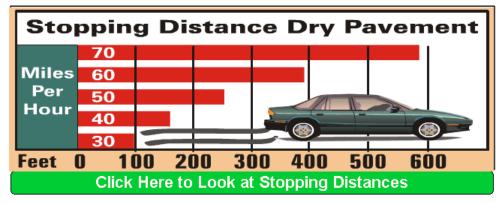
Module 6

MUTCD CHAPTER 6E - FLAGGER CONTROL (PLEASE REFER TO THE PDF VERSION)

Press Here

Puerto Rico Transportation Technology Transfer Center

Flagger Safety ROADWAY SAFETY*


English

What Are the Main Hazards of Flagging?

Motorists kill about 20 flaggers each year.

Flagging can be dangerous

- High speed traffic
- Angry or aggressive drivers
- After seeing flagger, a motorist going
 60 mph needs almost 400 feet to stop

Puerto Rico Transportation Technology Transfer Center

A flagger shall be a person who provides TTC

Responsible for public safety

Greatest contact with public

 Should be trained in safe traffic control practices and public contact techniques

Should be able to satisfactorily demonstrate the following abilities:

 Receive and communicate specific instructions clearly, firmly, and courteously;

Qualifications for Flaggers

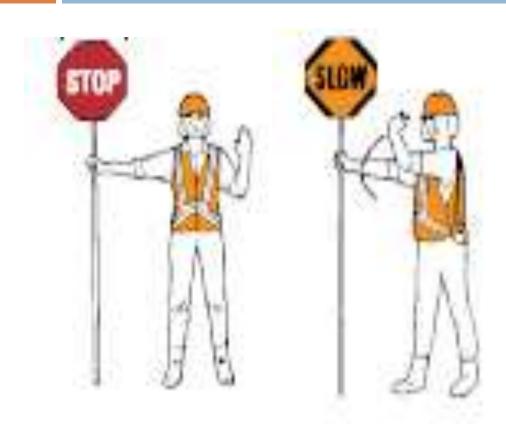
- Move and maneuver quickly in order to avoid danger from errant vehicles;
- Control signaling devices (such as paddles and flags) in order to provide clear and positive guidance to drivers approaching a TTC zone in frequently changing situations;
- 4. Understand and apply safe traffic control practices, sometimes in stressful or emergency situations; and
- 5. Recognize dangerous traffic situations and warn workers in sufficient time to avoid injury

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

- Standard For daytime and nighttime activity, flaggers shall wear safety apparel meeting the ANSI 107-1999 standard performance for Class 2 risk exposure
 - Material color shall be either fluorescent orange-red or fluorescent yellow-green
 - Retroreflective material shall be either orange, yellow, white, silver, yellow-green, or a fluorescent version of these colors
 - □ **Shall** be visible at a minimum distance of 300 m (1,000 ft)
 - Shall be designed to clearly identify the wearer as a person
- Guidance For nighttime activity, safety apparel for
 Class 3 risk exposure should be considered

Hand-Signaling Devices

- □ Primary and preferred device → STOP/SLOW paddle
 - Shall have an octagonal shape on a rigid handle
 - Shall be at least 450 mm (18 in) wide with letters at least 150 mm (6 in) high
 - Background of the STOP face shall be red with white letters and border
 - Background of the SLOW face shall be orange with black letters and border
 - When used at night, the STOP/SLOW paddle shall be retroreflectorized



STOP/SLOW paddle

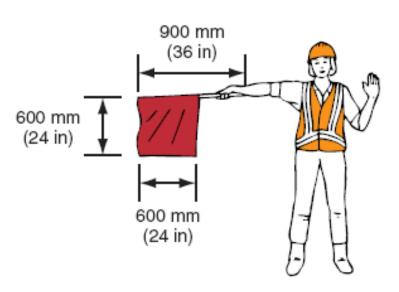
Puerto Rico Transportation Technology Transfer Center

□ Emergency situations → red flags

■ **Shall** be a minimum of 600 mm (24 in) square, made of a good grade of red material,

□ Shall be securely fastened to a staff that is approximately 900 mm (36 in) in length

When used at nighttime, flags shall be retroreflectorized red



R O

PREFERRED METHOD STOP/SLOW Paddle

EMERGENCY SITUATIONS ONLY Red Flag

TO STOP TRAFFIC

Flagger Procedures

Flagger Procedures

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

PREFERRED METHOD STOP/SLOW Paddle

EMERGENCY SITUATIONS ONLY Red Flag

TO LET TRAFFIC PROCEED

Flagger Procedures

Puerto Rico Transportation Technology Transfer Center

PREFERRED METHOD STOP/SLOW Paddle

EMERGENCY SITUATIONS ONLY Red Flag

TO ALERT AND SLOW TRAFFIC

Flagger Stations

- Shall be located such that approaching road users will have sufficient distance to stop at an intended stopping point
- Should be located such that an errant vehicle has additional space to stop without entering the work space
- Except in emergency situations,
 - Shall be preceded by an advance warning sign or signs
 - Shall be illuminated at night

W20-7a

OR

Table 6E-1. Stopping Sight Distance as a Function of Speed

Flagger Stations, MUTCD 2003 Edition

Speed* (km/h)	Distance (m)	
30	35	
40	50	
50	65	
60	85	
70	105	
80	130	
90	160	
100	185	
110	220	
120	250	

Speed* (mph)	Distance (ft)	
1 1 /	` '	
20	115	
25	155	
30	200	
35	250	
40	305	
45	360	
50	425	
55	495	
60	570	
65	645	
70	790	
75	820	

^{*} Posted speed, off-peak 85th-percentile speed prior to work starting, or the anticipated operating speed

Table 6E-1. Stopping Sight Distance as a Function of Speed

Speed*	Distance	
20 mph	115 feet	
25 mph	155 feet	
30 mph	200 feet	
35 mph	250 feet	
40 mph	305 feet	
45 mph	360 feet	
50 mph	425 feet	
55 mph	495 feet	
60 mph	570 feet	
65 mph	645 feet	
70 mph	730 feet	
75 mph	820 feet	

Posted speed, off-peak 85th-percentile speed prior to work starting, or the anticipated operating speed

Flagger Safety ROADWAY SAFETY*

How Can We Protect Ourselves?

Stay alert and out of harm's way.

Keep your guard up

- Stand alone on shoulder in clear view. not in open traffic lane
- Plan an escape route for emergencies
- Stay in communication with other flaggers
- Stay alert, keep focused on work
- Make sure your hand signals don't conflict with traffic signals
- Treat motorists with respect and courtesy, don't pick fights or respond to anger, notify law enforcement when motorists do not obey flaggers

Flagger Safety Tips

Flagger Safety ROADWAY SAFETY

What Should Flaggers Avoid?

Flaggers must avoid dangerous behavior.

Flagging Don'ts:

- Don't stand where you can be crushed
- Don't stand in the shade, over the crest of a hill, or around a sharp curve
- Don't leave your position until properly relieved
- Don't stand near equipment
- Don't stand in a group
- Don't make unneeded conversation
- Don't read or daydream on duty
- Don't listen to music or use ear phones
- Don't turn your back to the traffic

Temporary Traffic Control Devices

How Do You Deal with an Angry Public?

Things you and your employer should try to do.

- Stay calm and respond in a nonviolent manner
- Keep yourself in visible and in well lit areas
- Make sure you can communicate with co-workers and can call for help
- Make allowances for quick egress
- Create procedures to report violence to employers so they know trouble spots
- Respond to public violence immediately; provide workers with media to record events, attackers, license tag numbers, and so on
- Provide extra police protection and security when necessary
- Provide positive separation between workers and motorists, when feasible

Module 7

TTC Zone Devices

Standard

- All signs, signals, markings, and other devices used to regulate, warn, or guide road users, placed on, over, or adjacent to a street, highway, pedestrian facility, or bikeway by authority of a public body or official having jurisdiction.
- All traffic control devices used on street and highway construction, maintenance, utility, or incident management operations shall conform to the applicable provisions of the MUTCD.

Function of Traffic Control Devices (TCD)

- Promote highway safety
 - Provide for the orderly and predictable movement of all traffic
 - Provide guidance and warning as needed

- Types of TCD
 - Warning signs
 - Channelizing devices
 - Lighting devices
 - Shadow vehicles / advanced warning truck

Human Factor and Information Processing in Work Zones

Puerto Rico Transportation Technology Transfer Center

- R P
- People drive normally through work zones, even when there are traffic control devices present in the roadway, unless there is evident activity (workers, equipment, etc.)

 Lack of driver familiarity with temporary traffic control signals

Unexpected conditions along work zone

ER P

The colors for regulatory signs shall follow the Standards for regulatory signs in Table 2A-4.

Traffic Control Devices - Standard

- Warning signs in TTC zones shall have a black legend and border on an orange background except:
 - Highway-Rail Grade Crossing Advance Warning (W10-1) sign which shall have a black legend and border on a yellow background.
 - Signs that are permitted to have fluorescent yellow-green backgrounds.

W10-1

Temporary Traffic Control Zones Devices Regulations

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

Standard

All signs used at night shall be either retroreflective with a material that has a smooth, sealed outer surface or illuminated to show the same shape and similar color both day and night.

The requirement for sign illumination shall not be considered to be satisfied by street, highway, or strobe lighting.

Temporary Traffic Control Zones

Devices Regulations

Puerto Rico Transportation Technology Transfer Center


Standard

- When standard orange flags or flashing warning lights are used in conjunction with signs, they shall not block the sign face.
- □ For freeways and expressways, the size of diamond shaped TTC warning signs shall be a minimum of 1200 x 1200 mm (48 x 48 in).

Figure 6F-1. Height and Lateral Location of Signs—Typical Installations

Puerto Rico Transportation Technology Transfer Center

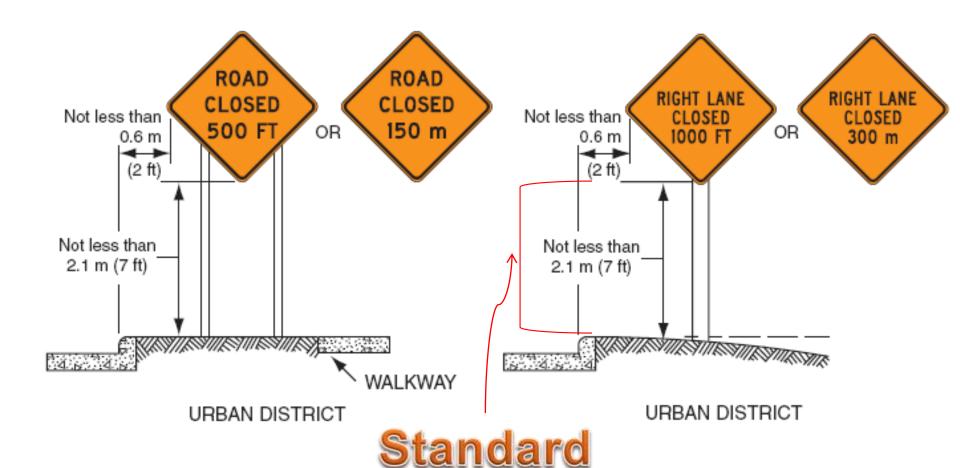
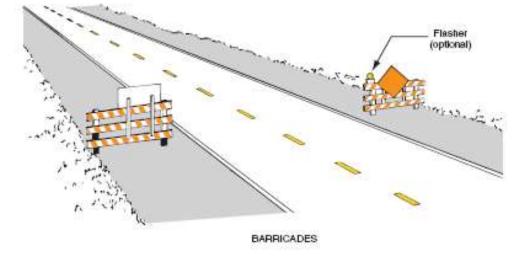


Figure 6F-1. Height and Lateral Location of Signs—Typical Installations

Puerto Rico Transportation Technology Transfer Center



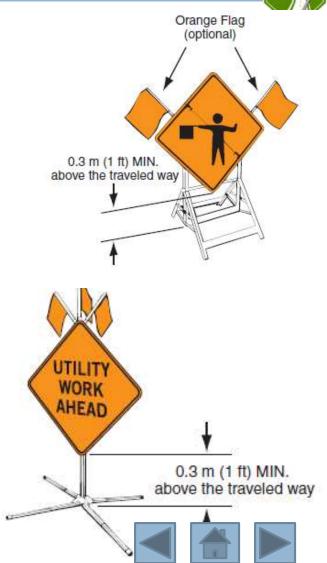
Temporary Traffic Control Zones Devices Site Placement Standard

Puerto Rico Transportation Technology Transfer Center

Signs mounted on barricades and barricade/sign combinations

shall be crashworthy

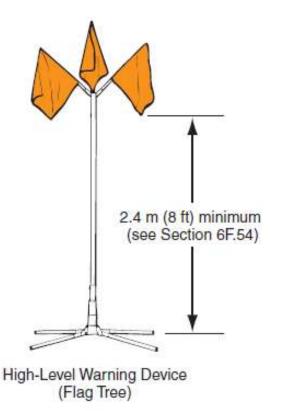
Where it has been determined that the accommodation of pedestrians with disabilities is necessary, signs shall be mounted and placed in accordance with Americans with Disabilities Act Accessibility Guidelines for Buildings and Facilities (ADAAG).



Temporary Traffic Control Zones Devices Site Placement Standard

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

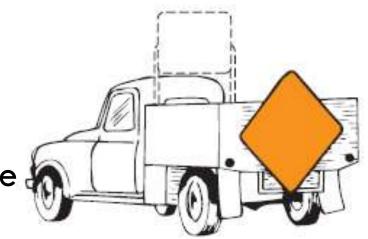
- Sign supports shall be crashworthy.
- □ Large signs having an area exceeding 5 square meters (50 ft²) that are installed on multiple breakaway posts shall be mounted a minimum of 2.1 m (7 ft) above the ground.
- Signs mounted on barricades, or other portable supports, shall be no less than 0.3 m (1 ft) above the traveled way.


Temporary Traffic Control Zones Devices Site Placement

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

Neither portable nor permanent sign supports should be located on sidewalks, bicycle facilities, or areas designated for pedestrian or bicycle traffic.

Except as noted in the Option, signs mounted on portable supports should not be used for a duration of more than 3 days.



PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

For mobile operations, a sign may be mounted on a work vehicle, a shadow vehicle, or a trailer stationed in advance of the TTC zone or moving along with it.

The work vehicle, the shadow vehicle, or the trailer may or may not have an impact attenuator.

PORTABLE AND TEMPORARY MOUNTINGS

TTC Devices - Portable Changeable Message (PCM) Signs

Puerto Rico Transportation Technology Transfer Center

- R
- PCM signs shall be TTC devices with the flexibility to display a variety of messages.
- Each message shall consist of either one or two phases.
- A phase shall consist of up to three lines of eight characters per line.

TTC Devices - Arrow Panels

Puerto Rico Transportation Technology Transfer Center

- Shall be a sign with a matrix of elements capable of either flashing or sequential displays.
- Shall provide additional warning and directional information to assist in merging and controlling road users through or around a TTC zone.
- A vehicle displaying an arrow panel shall be equipped with highintensity rotating, flashing, oscillating, or strobe lights.

TTC Devices - Arrow Panels

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

- Type A use on low-speed urban streets.
- Type B for intermediate-speed facilities and for maintenance or mobile operations on high-speed roadways.
- Type C intended to be used on high-speed, high-volume motor vehicle traffic control projects.
- Type D intended for use on authorized vehicles.

Panel Type	Minimum Size	Minimum Legibility Distance	Minimum Number of Elements
A	1200 x 600 mm (48 x 24 in)	0.8 km (1/2 mi)	12
В	1500 x 750 mm (60 x 30 in)	1.2 km (3/4 mi)	13
C	2400 x 1200 mm (96 x 48 in)	1.6 km (1 mi)	15
D	None*	0.8 km (1/2 mi)	12

TTC Devices - Arrow Panels

241

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

Operating Mode

At least one of the three following modes shall be provided:

Flashing Arrow

Panel Display (Type C panel illustrated)

(Right arrow shown; left is similar)

Sequential Arrow

Sequential Chevron



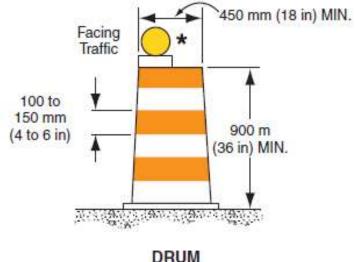
II. The following mode shall be provided: Flashing Double Arrow

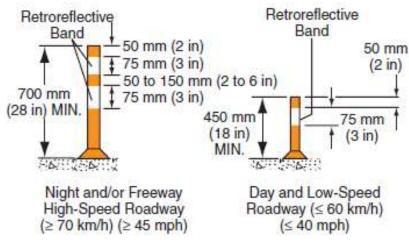
Flashing Caution

III. The following mode shall be provided:

Channelizing Devices

- Cones
- □ Tubular Markers
- □ Vertical Panels
- □ Drums
- Barricades

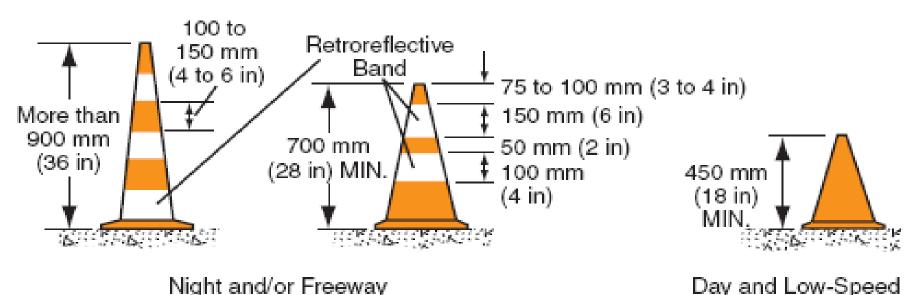




- Low-mass, single-piece traffic cones, tubular markers, single-piece drums, & delineators
- Plastic drums w/ Type A or C warning lights moved from Category 2 to Category 1
- Self-certification allowed

Category 1 Devices

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER


Shall be predominantly orange.

Shall be made of a material that can be struck without causing damage to the impacting vehicle.

 For nighttime use - shall be retroreflectorized or equipped with lighting devices for maximum visibility.

Cones - Standards

High-Speed Roadway

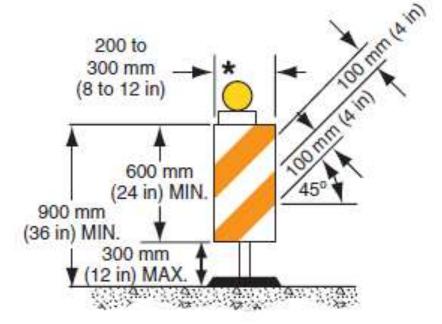
(≥ 70 km/h) (≥ 45 mph)

CONES

Note: If drums, cones, or tubular markers are used to channelize pedestrians, they shall be located such that there are no gaps between the bases of the devices, in order to create a continuous bottom, and the height of each individual drum, cone, or tubular marker shall be no less than 900 mm (36 in) to be detectable to users of long canes.

Roadway (≤ 60 km/h)

(≤ 40 mph)

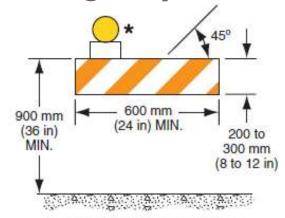

 Vertical panels, Type I, II, or III barricades, portable sign stands

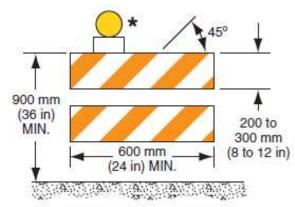
□ Category 1 devices w/ attachments (< 45 kg (100

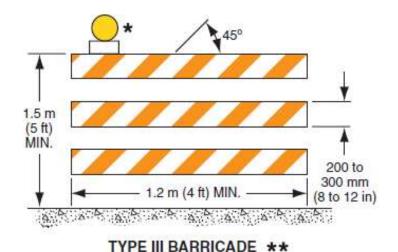
lbs) up to 100 kg)

Category 2 Devices

Must be crash tested by approved agency






Category 2 Devices

TYPE I BARRICADE **

TYPE II BARRICADE **

900 mm (36 in) 300 mm (12 in) 200 mm (8 in)

DIRECTION INDICATOR BARRICADE **

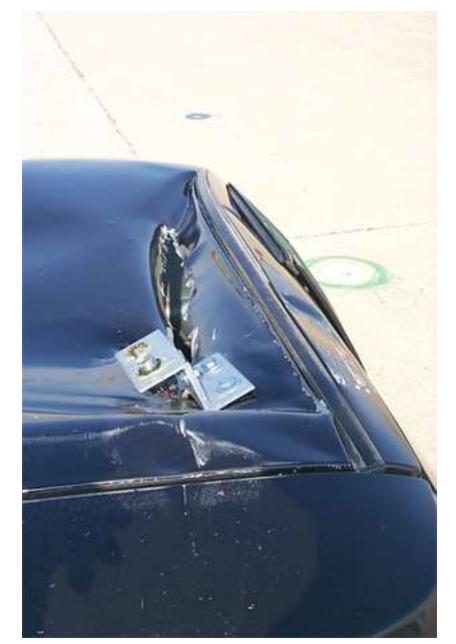
* Warning lights (optional)

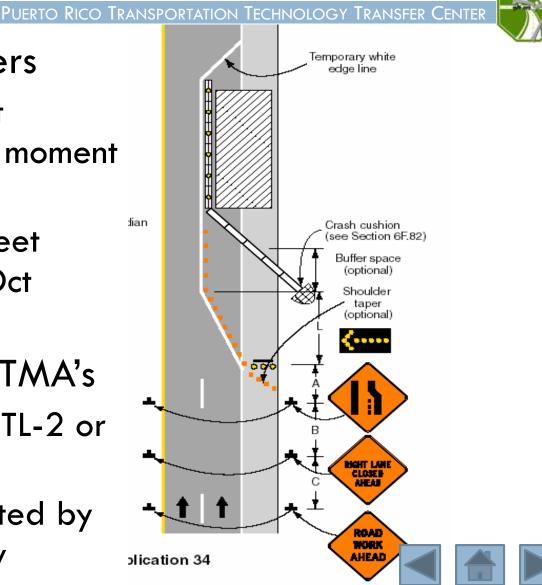
^{**} Rail stripe widths shall be 150 mm (6 in), except that 100 mm (4 in) wide stripes may be used if rail lengths are less than 900 mm (36 in). The sides of barricades facing traffic shall have retroreflective rail faces.

Barricades

X-stands w/ vinyl roll-ups

Puerto Rico Transportation Technology Transfer Center




Example of Windshield Penetration

WZ Category 3 Devices

Temporary barriers

- Barrier joints must provide tensile & moment capacity
- New units must meetNCHRP 350 by Oct2002
- Crash cushions & TMA's
 - Can be tested to TL-2 or TL-3
 - Must be crash tested by approved agency

Uses for Temporary Longitudinal Barriers

Puerto Rico Transportation Technology Transfer Center

- □ Prevent Access to Work Zone
- □ Provide Positive Protection for Workers
- Separate Two-Way Traffic
- □ Protect Falsework

Temporary Safety Barriers

PUERTO RICO	Transportation	TECHNOLOGY	TRANSFER	CENTER

	PCB	Quickchange®	Low Profile	Plastic Shell/Steel
Structural Adequacy	Varies depending on the type of joint	TL-3*	TL-2*	TL-2 & TL-3*
Deflection	0 – 1.5 m [0 – 5 ft]	1.5 m [5 ft]	0.125 m [5 in]	3.8 & 3.9 – 6.9 m [22.6 ft]
Uses	Two-lane, two-way operation	Shielding for changeable lanes	Work sites in urban and suburban areas where sight distance is a problem	Shielding where high portability is
	Shielding obstacles and falsework			desired; i.e., rapidly changing and
	Shielding pavement edge drop-offs			emergency traffic control measures
				Protection in congested urban work sites

Puerto Rico Transportation Technology Transfer Center

- □ Positive protection to road workers
- Avoid penetration in work area
- Modular design
 - \square Impact angle: 15° 25°
 - □ Height: 32"
 - □ Base width: 24"
 - □ Top width: 6"
 - Length: 84" (7')
 - Maximum deflection: 0 5 feet

Portable Concrete Barrier

Steel Portable Barriers

Vulcan

TL-3

Steel Barrier Guard 800

Example of Plastic Portable Barriers

Quickchange Moveable Barrier

- Chain of modified F-shape barrier segments
- T-shape on top to allow pick up of segments
- □ Lateral movement from 4 to 18 ft
- Maximum deflection of 28 in at TL-3 design impact
- Transfer speed of 5 to 10 mph

Work Zone Crash Cushions

Triton CET Concrete End Treatment

267

Puerto Rico Transportation Technology Transfer Center

Sample Crash Cushions for Work Zones Quadguard TL-3

React 350 TL-1/2/3

Absorb 350

Puerto Rico Transportation Technology Transfer Center

- Portable, usually trailer-mounted devices
- Lighting supports, flashing arrow panels, temporary traffic signals, & changeable message signs
- Should be delineated or shielded

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

Temporary Traffic Control Devices

What Are Best Practices?

Precautions make TTCD placement safer.

Contractors should

- Place, relocate, remove TTCDs when traffic is light
- Install TTCDs from the first TTCD motorist sees to the last
- Remove TTCDs from the last TTCD motorist sees to the first
- Prohibit workers on foot from operating behind a backing vehicle, behind vehicles that might back up, or in equipment blind spots
- Plan "moving work zones" with proper mobile warning devices <u>MUTCD</u>
 - Arrow panels
 - Changeable message boards
 - flashing vehicle lights
 - truck/trailer-mounted attenuators

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

Temporary Traffic Control Devices

How Are TTCDs Installed and Removed?

Install from the first TTCD motorists sees to the last. Remove from the last seen to the first seen.

Remove TTCDs

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

Temporary Traffic Control Devices

How Are TTCDs Installed and Removed?

Install from the first TTCD motorists sees to the last. Remove from the last seen to the first seen.

Runovers/Backovers ROADWAY SAFETY*

How Can We Be Safe When Placing TCDs?

Simple precautions make placement of TCDs (Traffic Control Devices) safer.

Workers should

- Wear Class III vests to be easily seen
- Place, relocate, or remove TCDs when traffic flow is light
- When possible, work from platform on vehicle

Worker Safety Tips

- Use seat, seatbelt, fall restraint, or guardrail and a handhold when guardrail must be removed
- Stay in constant communication with driver
- Use shadow vehicle to warn drivers

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

Temporary Traffic Control Devices

How Do We Protect Ourselves?

Use platforms designed for TTCD deployment and retrieval.

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

Temporary Traffic Control Devices

How Do We Protect Ourselves?

View Seat Belt Demos

Use Seat Belts, Harnesses and Restraints.

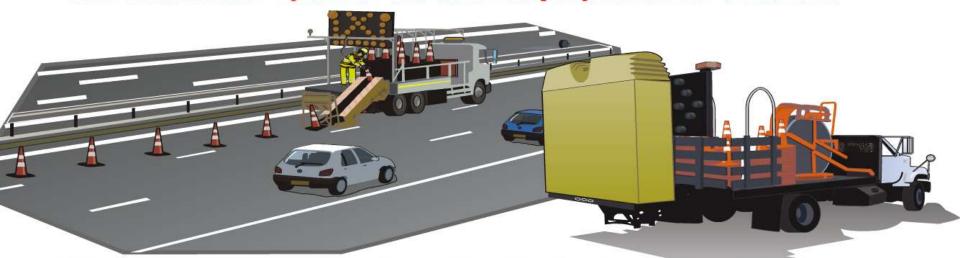
PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

Temporary Traffic Control Devices

How Do We Protect Ourselves?

Use Shadow Vehicles and Attenuators.

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER



Temporary Traffic Control Devices

How Do We Protect Ourselves?

Use automated systems for TTCD deployment and retrieval.

Several automated systems for deploying and retrieving TTCDs are currently available. Expect more in the future.

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

Temporary Traffic Control Devices

How Do We Protect Ourselves?

Module 8

Brainstorming for creating awareness of TTC in USVI

Module 9

Examples of adequate and inadequate use of TTC in highway and utility work zones

Module 10

Workshop: Development of a TTC Plan for (a) Rural, (b) Urban using PDF version

PUERTO RICO TRANSPORTATION TECHNOLOGY TRANSFER CENTER

University of Puerto Rico at Mayagüez

Course Evaluation

