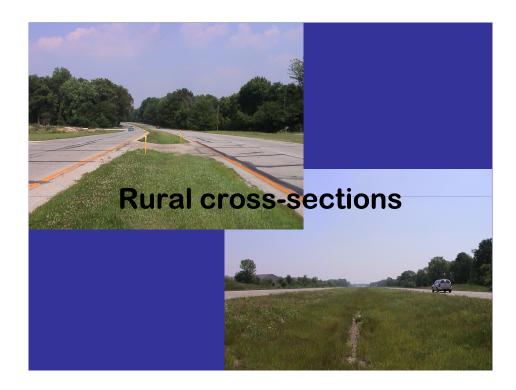


Presentation Agenda

- 1. Background & objectives
- 2. Data collection
- 3. Risk perception factors
- 4. Speed and crash factors
- 5. Simultaneous equations model
- 6. Conclusions

- Nominal safety compliance with road design guidelines and standards
- Objective safety
 - Measured with crashes
 - Likelihood of crash on the road for a particular driver
- · Subjective / perceived safety
 - Safety as perceived and interpreted by drivers
 - Driver behavior \rightarrow free-flow speed selection
- Need to predict safety on new or modernized roads

Objectives


- Perform an exploratory analysis of the relationship between road characteristics, human behavior, and crashes
- Develop an advanced model that links
 - human behavior as influenced by perceived risk
 - objective risk, and
 - road characteristics of four-lane highways in rural and suburban areas

DATA COLLECTION

Road characteristics Free-flow speeds Crash rates

Selection Criteria

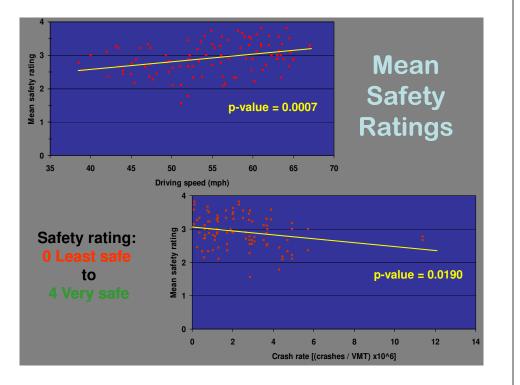
Section characteristic	Criteria
Location	Suburban to rural
Highway type	U.S. and state highways
Highway functional class	Arterial to collector
Annual average daily traffic	Higher than 1000 vpd
Posted speed limit	55 mph preferred, at least 40 mph
Terrain	All types
Pavement surface type	Rigid (PCC) to flexible (AC)
Pavement condition	Surface and markings in good condition
Development type	Commercial, residential to no-development
Access control	Full, partial to no control
Median type	All types to undivided
Curbs	All types to no curb
Sidewalks	Yes to no
Traffic control	No stop sign or traffic signal within 0.5 mile
Section length	Approximately 1 mile

RISK PERCEPTION STUDY

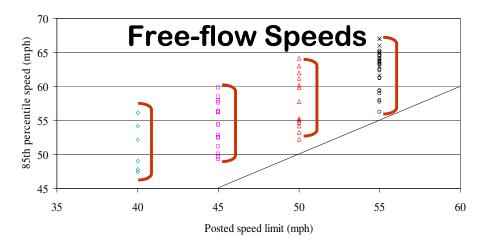
Safety ratings vs. speed and crash rate Risk perception factors

Some Details About the Survey

- 112 licensed drivers participated voluntarily
- 48 observation sites in four-lane highways
- Sections were categorized into four groups of 12, according to their crash rates
 - One section was selected from each group
 - Each section was shown at two different speeds
- Eight video clips were shown to each subject
- Risk perception questionnaire
 - Safety rating: 0 least safe to 4 very safe
 - Identify hazardous road characteristics


Videotaped Sequence of Highway Section

Impact of Road Characteristics on Safety Rating


Road Variable	Less Safe Very Safe	
Cross-section width (in feet)	÷	
Rural area	÷	
Presence of two-way left turn median lane	\rightarrow	
Intersection density (# per mile)	(
Median opening density (# per mile)	÷	
Driveway density (# per mile per direction)	÷	
Commercially-developed area (section has 10 or more commercial driveways per mile per direction)	÷	

Ol Statistically significall

SEPARATE SPEED AND CRASH MODELS

Observed free-flow speeds
Speed prediction models
Crash performance functions

 \circ PSL = 40 mph \circ PSL = 45 mph \diamond PSL = 50 mph \circ PSL = 55 mph \times PSL = 55 mph & rural area

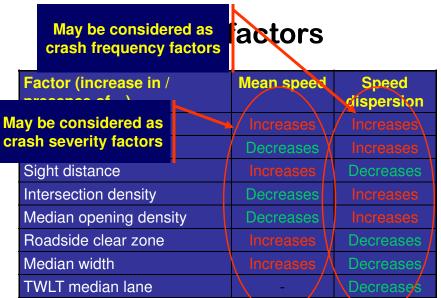
Speed	Mean value	Standard deviation	Minimum value	Maximum value
Mean speed, mph	53.72	5.30	42.05	62.29
85 th percentile speed, mph	58.69	5.29	47.46	67.00

Speed Models

Typical OLS speed model

$$V_i = \sum_k b_k X_{ik} + \epsilon$$

• Free-flow speed model (Figueroa and Tarko, 2005, TRR 1912)


$$V_{_{ip}} = m_{_i} + Z_{_p} \cdot \sigma_{_i} + \epsilon = \sum_j a_{_j} \cdot X_{_{ij}} + \sum_k b_k \cdot (Z_{_p} \cdot X_{_{ik}}) + \epsilon$$

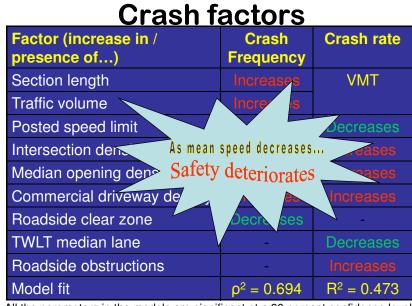
- 1. Separates impacts on **mean speed** from impacts on individual **speed dispersion**
- 2. More efficient in identifying relationships between diverse road characteristics and speeds
- 3. Estimate the entire range of speed variability

OLS-PD Speed Model

$$\begin{split} V_{p} = & 56.95 - 4.84 \times PSL_{50} - 5.35 \times PSL_{45} - 7.84 \times PSL_{40} \\ &+ 2.58 \times RA + 1.26 \times 10^{-3} \times SD - 0.39 \times ID \\ &- 0.51 \times MOD + 0.04 \times ICLR - 2.21 \times ECLR_{\leq 25} \\ &+ 5.56 \times Z_{p} - 0.49 \times (Z_{p} \times PSL_{45}) - 0.49 \times (Z_{p} \times PSL_{40}) \\ &- 0.53 \times (Z_{p} \times RA) - 3.60 \times 10^{-4} \times (Z_{p} \times SD) + 0.02 \times (Z_{p} \times ID) \\ &+ 0.04 \times (Z_{p} \times MOD) - 3.17 \times 10^{-3} \times (Z_{p} \times ICLR) \\ &+ 0.17 \times (Z_{p} \times ECLR_{\leq 25}) - 0.32 \times (Z_{p} \times TWLT) \end{split}$$

PSL = posted speed limit, RA = rural area, SD = sight distance, ID = intersection density, MOD = median opening density, ICLR = internal clear zone, ECLR = external clear zone, ECLR_{<25} = binary for narrow external clear zone, TWLT = binary for two-way left turn median lane

All the parameters in the model are significant at a 93 percent confidence level Adjusted R-squared is 0.884

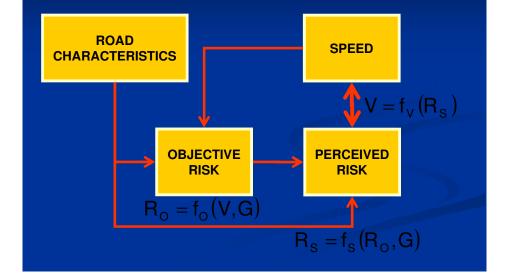

Crash Models

 $\lambda_i = \textbf{L} \cdot \textbf{AADT} \cdot \textbf{e}^{(-6.962+0.082 \cdot \textbf{ID} + 0.481 \cdot \textbf{COM} + 0.623 \cdot \textbf{ECLR}_{< 20})}$

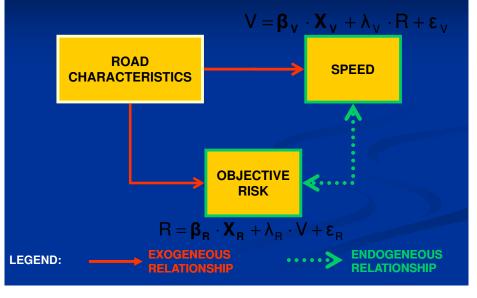
 $CR = 0.661 + 0.883 \times PSL_{45} + 2.337 \times PSL_{40}$ $+ 0.261 \times ID + 0.248 \times MOD$ $- 0.810 \times TWLT + 2.099 \times SW + 1.496 \times PB$

Where:

L = section length, AADT = annual average daily traffic, PSL = posted speed limit, ID = intersection density, MOD = median opening density, ECLR_{<20} = binary for narrow external clear zone, TWLT = binary for two-way left turn median lane, COM = binary for high commercial development, SW = binary for sidewalk, PB = binary for polelines and embankments



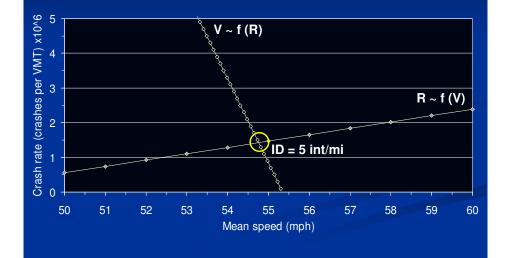
All the parameters in the models are significant at a 90 percent confidence level


SYSTEM OF SIMULTANEOUS EQUATIONS MODEL

*System of relationships *Development of simultaneous equations *Speed and objective risk factors

System of Relationships

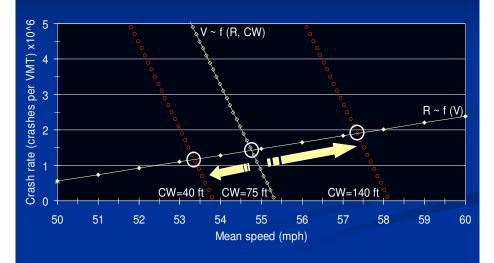
Simplified System of Relationships


System of Simultaneous Equations $V = 52.122 - 0.413 \times R$ \leftarrow ENDOGENOUS VARIABLE $-3.755 \times PSL_{50} - 5.460 \times PSL_{45} - 7.640 \times PSL_{40}$ $+3.417 \times RA + 0.043 \times CW + 2.405 \times ECLR_{20} - 1.771 \times HC$ $R = -10.443 + 0.183 \times V$ $+ 1.485 \times PSL_{50} + 2.462 \times PSL_{45} + 4.394 \times PSL_{40}$ $+ 0.335 \times ID + 0.344 \times MOD - 0.926 \times TWLT$ $+ 2.491 \times SW + 1.512 \times PB$

All the parameters in the models are significant at a 90 percent confidence level

Legend:

PSL = posted speed limit, RA = rural area, CW = cross-section width, ECLR = narrow clear zone, HC = horizontal curve, ID = intersection density, MOD = median opening density, TWLT = median lane, SW = sidewalk, PB = roadside obstruction


Behavior of the System of Simultaneous Equations

Behavior of the System of Simultaneous Equations

Behavior of the System of Simultaneous Equations

Conclusions

- Typical speed and safety prediction models that appraised separately the effect of road characteristics failed to identify the endogenous relationship between the driver behavior (speed) and objective risk (crash rate)
- Advantages of model of simultaneous equations
 - improved the identification of road characteristics as speed or crash rate factors
 - considered the endogenous relationship between objective risk and driver behavior
 - provide deeper understanding of the effect of the road characteristics and driver behavior and their impact on safety

