

Vibration Impact Analysis in Ponce de León Avenue of Phase IV

Alba J. Castro Echevarría Advisor: Dr. Antonio A. González UPR - Mayagüez

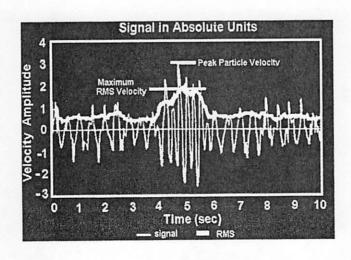
Objective

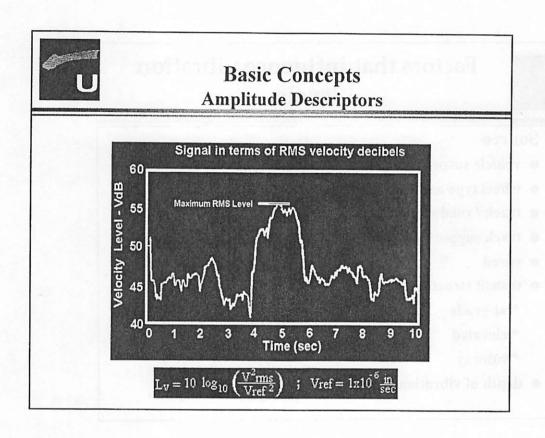
 Investigate the vibration impact due to Tren Urbano in the Ponce de León Avenue corresponding to Phase IV.

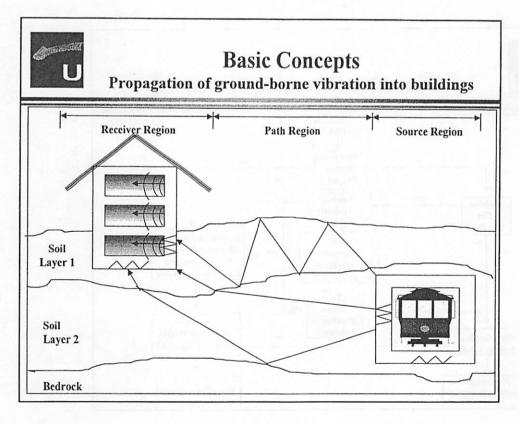
Basic Concepts

Definitions

Ground-borne vibration


- oscillatory motion transmitted through ground into buildings
- caused by trains, buses, construction activities, pile driving and operating heavy earth-moving equipment
- described in terms of:
 - displacement (inches)
 - velocity (inches per second)
 - acceleration (inches per second per second)

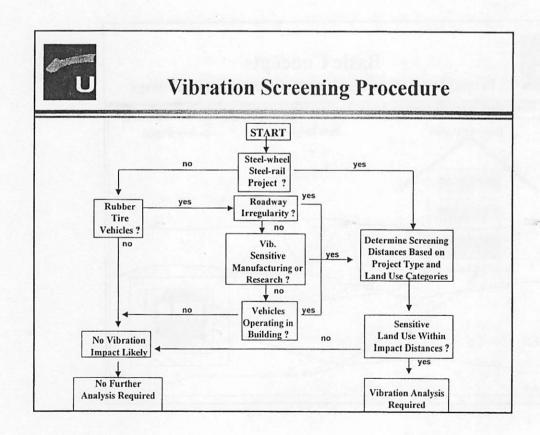

Ground-borne noise


sound generated by shaking of walls, ceilings and floors

Basic Concepts Amplitude Descriptors

Factors that influence vibration levels

Source


- vehicle suspension
- wheel type and condition
- track / roadway surface
- track support system
- speed
- transit structure
 - * at-grade
 - * elevated
 - * subway
- depth of vibration source

Path

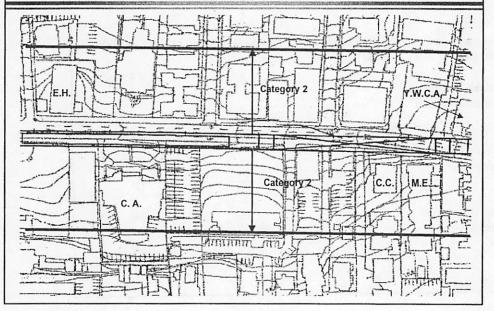
- soil type
- rock layers
- soil layering
- depth of water table
- frost depth

Receiver

- foundation type
- building construction
- acoustical absorption

Vibration Impact Criteria

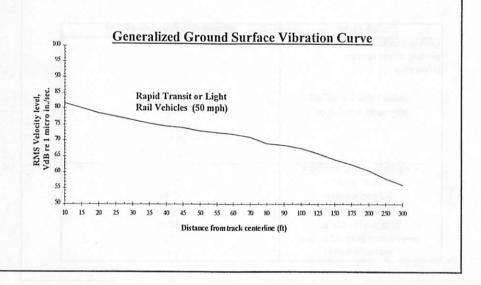
Land use category and special buildings	Ground-borne vibration impact levels (VdB)	Ground-borne noise impact levels (dB)	Critical Distance (ft)
Category 1	65		600
Buildings where low ambient			
vibration is essential for internal operations			
Category 2	72	35	200
Residences and buildings where			200
people normally sleep			
Category 3	75	40	120
Institutions			120
Concert Halls, TV studios and recording studios	65	25	600
Auditoriums	72	30	200
Theathers	72	35	200



General Vibration Assessment

- Select appropriate generalized ground surface vibration curve
- Apply source adjustment factors
- Apply path adjustment factors
- Apply receiver adjustment factors

Case study: Ponce de León Avenue Screening Procedure


Case Study: Ponce de León Avenue General Vibration Assessment

- Source
 - heavy rail
 - primary suspension: chevron springs
 - crossovers
 - welded rail
 - speed: 50 mph (13 mph at station)
 - bored subway tunnel

- Path:
 - soil type: fine sand
- Receiver
 - categories 2 & 3
 - large masonry buildings

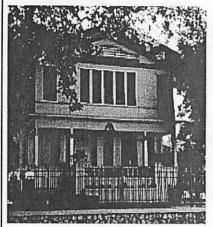
Case Study: Ponce de León Avenue General Vibration Assessment

Adjustment factors to generalized vibration curve

Source Factor	Adjustment to Propagation Curve		
Speed	+20 log ₁₀ (speed / speed _{ref}) dB		
Vehicle with stiff primary suspension	+8 dB		
Resilent wheels	0 dB		
Worn wheels or wheels with flats	+10 dB		
Vorn or corrugated Track	+10 dB		
Crossovers and other special trackwork	+10 dB		
Jointed rail track	+5 dB		
Floating slab track bed	-15 dB		
Ballast mats	-10 dB		
High resilience fasteners	-5 dB		
Resiliently supported ties	-10 dB		
Type of transit structure			
At-grade	0 dB		
Open cut	0 dB		
Elevated structure	-10 dB		
Bored subwaytunnel	0 dB		
Cut & cover subway	-3 dB		
Subway station	-5 dB		
Rock-based subway	-15 dB		

Adjustment factors to generalized vibration curve

Path Factor	Adjustment to Propagation Curve		
Geologic conditions that			
promote efficient vibration			
propagation			
shallow bedrock or stiff soil	+10 dB		
propagation in rock layer:	+2 dB @ 50 ft		
	+4dB @ 100 ft		
	+6 dB @ 150 ft		
	+9 dB @ 200 ft		
Coupling to building foundation			
wood frame	-5 dB		
1-2 story masonry	-7 dB		
2-4 story masonry	-10 dB		
large masonry on piles	-10 db		
large masonry on spread footings	-13 dB		
foundation in rock	0 dB		



Adjustment factors to generalized vibration curve

Receiver Factor	Adjustment to Propagation Curve	
Floor-to-floor attenuation		
1-5 floors above grade	-2 dB/floor -1 dB/floor	
5-10 floors above grade		
amplification due to floor, wall and ceiling resonances	+6 dB	
Radiated Sound		
Peak frequency of ground vibration:		
Low frequency (< 30 Hz)	-50 dB	
Typical (30-60 Hz)	-35 dB	
High frequency (> 60 HZ)	-20 dB	

General Vibration Assessment Example: Centro Cultural Ramón Aboy Miranda

- Lv = 72 VdB at 60.8 ft for 50 mph
- Speed adjustment: $+20 \log_{10}$ (speed / speedref) = $+20 \log_{10} (50 / 50) = 0 dB$
- Source adjustment : crossovers (+10 dB) bored subway (0 dB)
- Path adjustment : 2 story mansory (-7 dB)
- Receiver adjustment : amplification (+6 dB)
- Radiated sound adjustment = -50 dB
- Adjusted Lv = 72 + 10 + 0 7 + 6 = 81 VdB
- Ln = 81 50 = 31dB
 For category 3, vibration impact level = 75
 VdB

Vibration Impact: Yes

Case Study: Ponce de León Avenue Results

Building	Station No. /	Vertical	Horizontal	Diagonal	Diagonal
	Cat.	Distance (m)	Distance (m)	Distance (m)	Distance (ft)
Excelsior Hotel	304+25/2	14.8	13.0	19.7	64.6
Colegio deAbogados	303+79/3	14.2	21.0	25.4	83.1
Lourdes Chapel	307+26/3	12.6	10.0	16.1	52.8
Centro Cultural	302+22/3	15.6	10.0	18.5	60.8
Ramón Aboy Miranda					
Y.W.C.A.	301+52/3	17.5	9.0	19.7	64.5
Miramar Embassy	301+84/2	16.6	9.0	18.9	61.9
Building	Curve Value	Adjusted Value	Ground-borne	Impact	
	(VdB)	(VdB)	Noise (dB)		
Excelsior Hotel	71	43.3	0	No	
Colegio deAbogados	69	51.3	1.3	No	
Lourdes Chapel	73	72	22	No	
Centro Cultural	72	81	31	Yes	
Ramón Aboy Miranda					
Y.W.C.A.	72	81	31	Yes	
Miramar Embassy	72	73	23	Yes	

Case Study: Ponce de León Avenue Conclusions

- There is not impact in the buildings near the station due to:
 - low speed
 - thicker wall of the station
- The impact will be higher in the buildings near the crossover.