

Javier González
Prof. Gerson Beauchamp
University of Puerto Rico
Mayagüez Campus
UPR/ MIT Tren Urban Program
Civil infrastructure Research Center

Problem

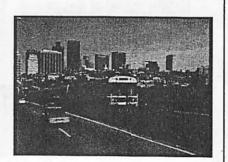
- Requirement of Headways is:
 - 4 minutes in rush hours
 - 5 minutes in basic service
 - 12 minutes in evenings, weekends, and holiday

Problem

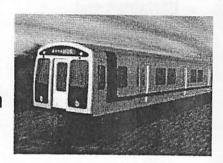
- Measuring
 - Position
 - Speed
- Keeping in mind that trains could slip while
 - Accelerating
 - Braking

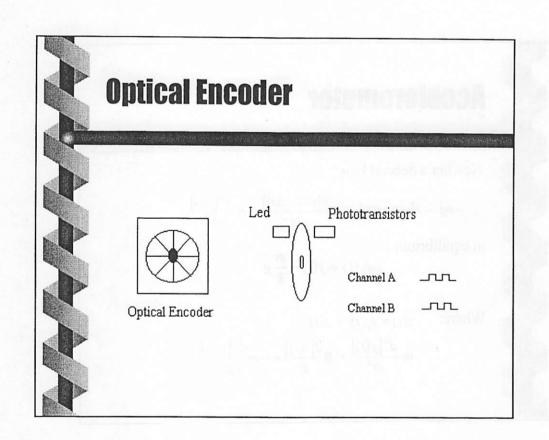
Objectives

 Obtain an optimal estimate of the train position and speed given measurements of wheel rotation and train acceleration.

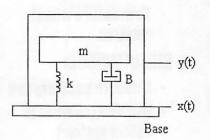


- Optical Encoder
 - To measure wheel rotation
- Slip of Wheels
 - Measure acceleration
 - Use Kalman Filter to obtain optimal estimate





- X(t) Displacement of accelerometer base
- y(t) Displacement of seismic mass
- · m Seismic mass
- · k-Spring constant
- B damping constant



Accelerometer

Newton's Second Law:

$$-mg - k[y(t)-x(t)] - B \frac{d[y(t)-x(t)]}{dt} = m \frac{d^2[y(t)]}{dt^2}$$

in equilibrium

$$y_e(t) = y(t) - \frac{m}{k}g$$

Where:

$$z(t) = y_e(t) - x(t)$$

$$m \frac{d^2[y(t)]}{dt^2} + B \frac{d[z(t)]}{dt} = -m \frac{d^2[x(t)]}{dt^2}$$

Accelerometer

Transfer function:

$$\frac{z(s)}{x(s)} = \frac{-ms^2}{ms^2 + Bs + k}$$

For low frequencies:

$$\omega << \omega_0 = \sqrt{(k/m)}$$

$$\frac{z(s)}{x(s)} = \frac{-ms^2}{k}$$

Therefore, the relative position is proportional to the acceleration:

$$z(t) = \frac{-m}{k} \frac{d^2 x(t)}{dt^2}$$

Kalman Filter

Stochastic System Model:

$$\begin{split} x_{k+1} &= Ax_k + Gw_k \\ y_k &= Cx_k + v_k \\ x_0 &= \left(\overline{x_0}, P_0\right), w_k \approx \left(0, Q\right), v_k \approx \left(0, R\right) \end{split}$$

Assumptions:

 w_k and v_k are white noise processes mutually uncorrelated with each other and with x_0 . $Q \ge 0$, R > 0

Filter Initialization:

$$\widetilde{\mathbf{x}}_{0} = \overline{\mathbf{x}_{0}}$$

Kalman Filter

Error Covariance: $P_{k+1} = AP_k A^T + GQG^T$

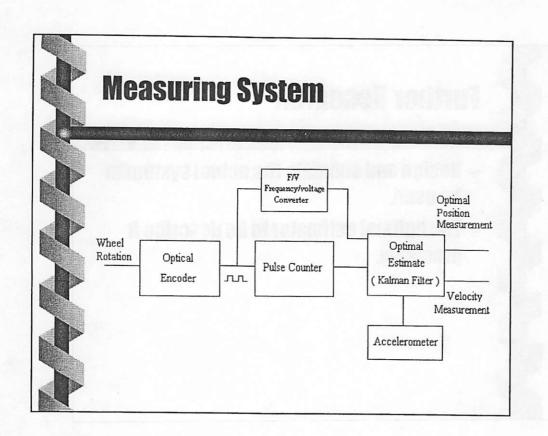
Estimate Update: $\widetilde{x}_{k+1} = A\widetilde{x}_k + Bu_k$

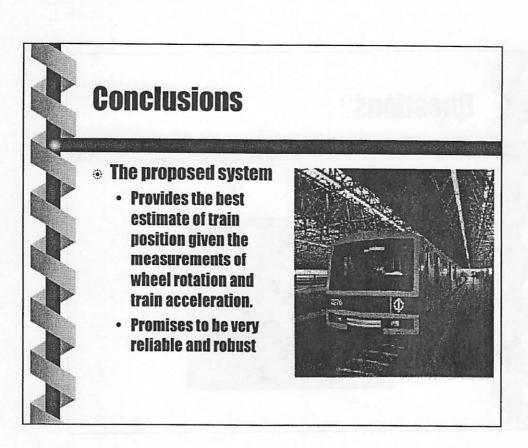
Measurement Update:

Error Covariance: $P_{k+1} = P_{k+1}^- - P_{k+1}^- C^T (C P_{k+1}^- C^T + R)^{-1} C P_{k+1}^-$

Estimate Update: $x_{k+1} = x_{k+1}^{-} + P_{k+1} C^{T} R^{-1} (y_{k+1} - Cx_{k+1}^{-})$

Kalman Gain: $K_{k+1} = P_{k+1}^{-}C^{T} (CP_{k+1}^{-}C^{T} + R)^{-1}$





Further Research

- Design and simulate the actual system to be used.
- The optimal estimator to be describe it precisely.

