

# Traffic Calming: A Study of It's Application to the Tren Urbano

Nahir Mendoza Zayas

Department of Civil Engineering
University of Puerto Rico at Mayagüez

UPR-MIT-Tren Urbano Program





### Abstract



This study investigates the implementation of traffic calming measures in Jardines de Caparra station. Its goal is to explain the concept, its advantages and disadvantages, and to demonstrate why it should be used in this project. The benefit of traffic calming is based on the experience of its use in many locations around the world. A suggested implementation, with a description of the devices used, will be included. Within the observations, it is found that the purpose of traffic calming in Jardines de Caparra is to reduce speed, not traffic. Traffic calming is a good option for the station, because it assesses the need for pedestrians' safety, and create a more comfortable environment in the station's neighborhood.





### Introduction

The construction of the TU is causing several changes along the alignment that can affect the quality of life of people in the surrounding areas. The expected increase in vehicular traffic will have adverse effects on the environment, the peacefulness of the neighborhoods, and on pedestrian's safety. Therefore, it is necessary to maintain a control of the traffic around the stations. Traffic calming can be an option to address the possible problems on stations located in a residential area.



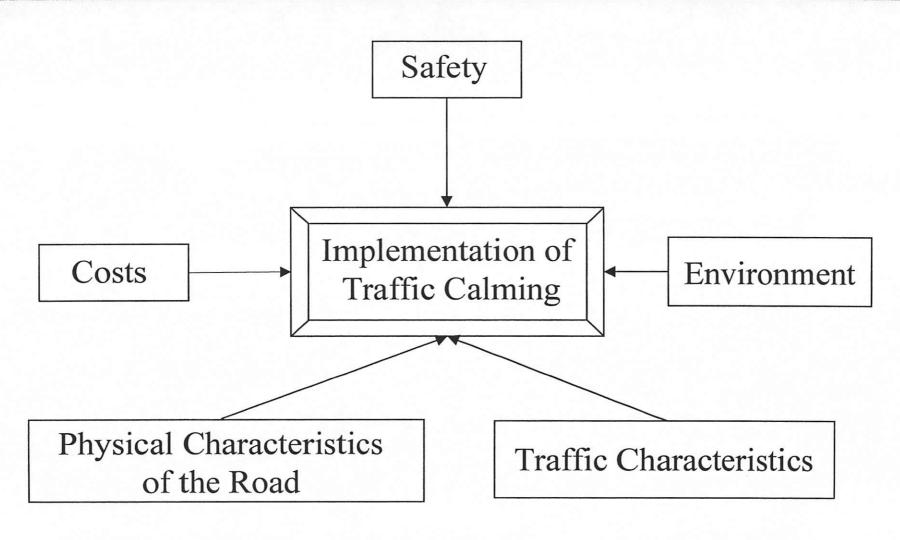


# Research Objectives

- Explain the concept of traffic calming and evaluate its possible application in the Tren Urbano Project.
- Study the advantages and disadvantages of the several techniques suggested.
- Demonstrate the use of traffic calming on one station located in a residential area.
- Recommend a design criteria for the use of traffic calming in future phases of the Tren Urbano Project.






# Traffic Calming

Urban planning concept used to manage traffic by geometric restrictions, diminishing its speed and volume. The purpose is to improve safety and mobility for pedestrians and vehicles, especially in residential neighborhoods. The techniques applied control the behavior of drivers, making them conscious that roads are not just for cars but for social interaction between vehicles, pedestrians, and cyclists.



# Factors Considered in the Implementation of Traffic Calming





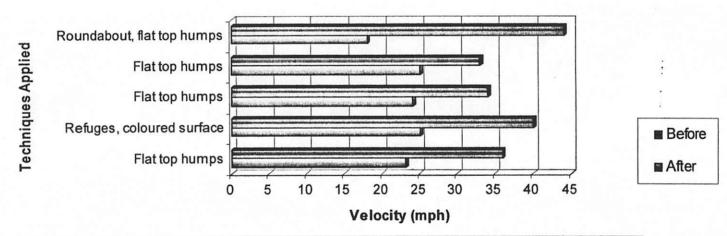
V Encuentro UPR/MIT sobre el Tren Urbano

January 7 - 15, 1999



# Advantages of Traffic Calming




- Reduce speeds
  - Less noise
  - Less environmental harm by less emissions
  - Less accidents
  - Better road capacity
- Pedestrians' and cyclists' safety
- Neighborhood security
- Aesthetics
- Alerts drivers that they are entering in a residential zone

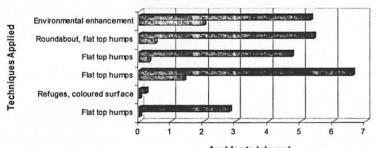


# Results of Traffic Calming Case Studies



#### **Speed Reductions With Traffic Calming**



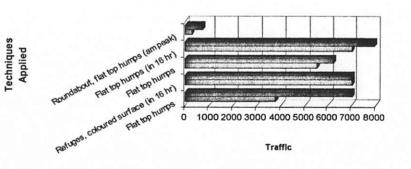

|          | Flat top humps | Refuges, coloured surface | Flat top humps | Flat top humps | Roundabout, flat top humps |
|----------|----------------|---------------------------|----------------|----------------|----------------------------|
| ■ Before | 36             | 40                        | 34             | 33             | 44                         |
| ■ After  | 23             | 25                        | 24             | 25             | 18                         |



# Results of Traffic Calming Case Studies



#### **Accident Reduction Using Traffic Calming Measures**




■Before ■After

#### Accidents (pia pa)

|          | Flat top humps | Refuges,<br>coloured surface | Flat top humps | Flat top humps | Roundabout, flat top humps | Environmental<br>enhancement |
|----------|----------------|------------------------------|----------------|----------------|----------------------------|------------------------------|
| ■ Before | 2.8            | 0.2                          | 6.6            | 4.7            | 5.4                        | 5.3                          |
| ■ After  | 0              | 0                            | 1.4            | 0.3            | 0.5                        | 2                            |

#### **Reductions in Traffic**

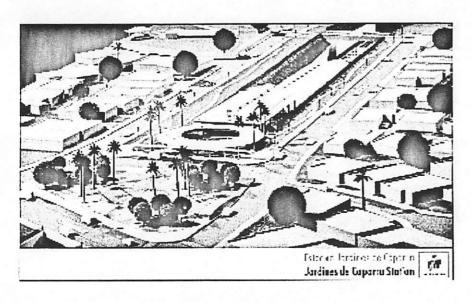


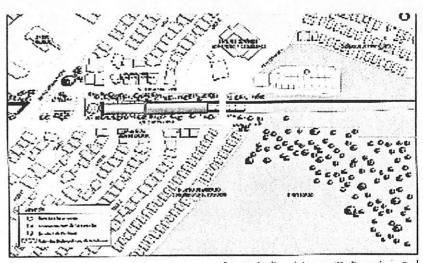
| ■ Before |
|----------|
| After    |

|          | Flat top humps | Refuges, coloured<br>surface (in 16 hr) | Flat top humps | Flat top humps (in 16 hr) | Roundabout, flat top<br>humps (am peak) |
|----------|----------------|-----------------------------------------|----------------|---------------------------|-----------------------------------------|
| ■ Before | 7000           | 7000                                    | 6200           | 7900                      | 723                                     |
| ■ After  | 3750           | 7000                                    | 5500           | 7000                      | 265                                     |



# Disadvantages of Traffic Calming



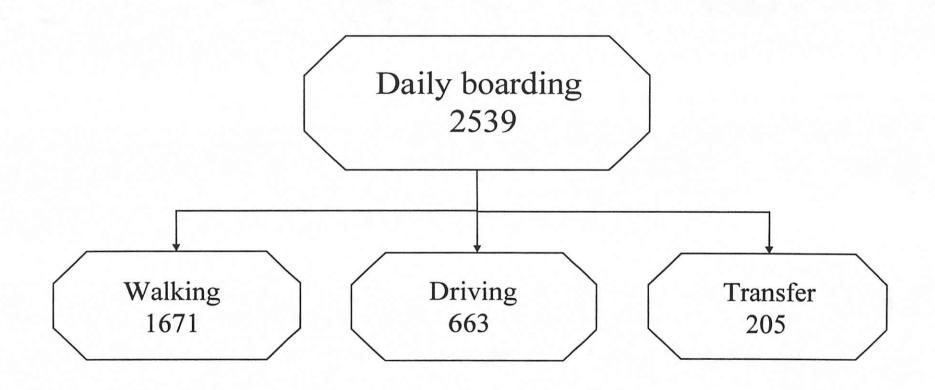


- Delays to emergency services
- Discomfort of patients
- Increased travel times for cars and buses
- "Público" efficiency can be affected
- Some techniques are expensive or confusing



# Study Area Jardines de Caparra Station



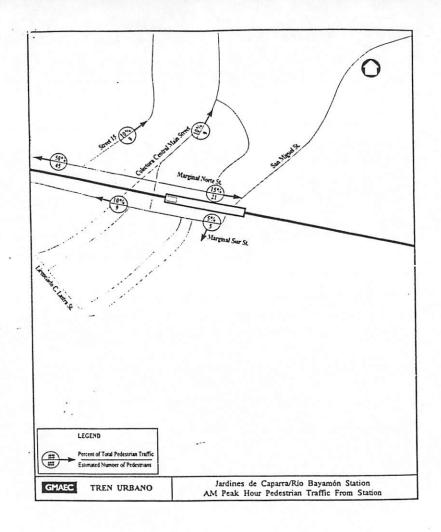


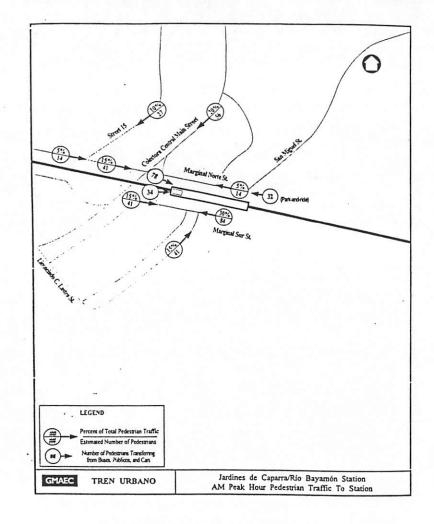



- Estacon Indines de Caparra/Na Buyanda Jardines de Caparra/Rio Bayanón Station
- •Redondo Entrecanales Contractor
- •Retained Cut Center Platform
- •Low to medium income residential zone
- Expected to have high pedestrian activity
- Isolated parking lot






### Jardines de Caparra Station (Cont.)








## Pedestrian Flow







# Why Traffic Calming on Jardines de Caparra Station?



- Residential area
- High pedestrian's incidence
- High school near the station
- Future residential developments
  - 2500 residences
  - densification
  - higher traffic flow
  - higher velocities
- Long distance between the station and the park & ride will expose pedestrians to danger.



### Goals in the Implementation of Traffic Calming in Jardines de Caparra Station



- Increase pedestrian's and driver's safety
- Reduce noise
- Increase accessibility
- Protect the environment



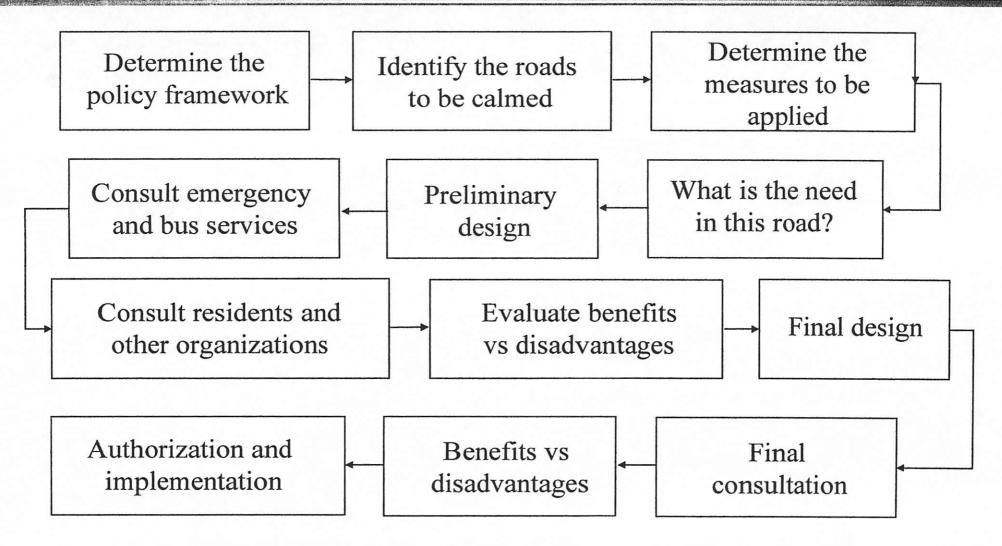
# Contractor Design Criteria



- Pick-up/drop-off zones
  - Should be in front of the station far from the residences.
  - Have different pavement
  - Landscaping to diminish visibility from the residences
  - Located at the forecourt and oriented towards Colectora Central
- Entrance control that permit its closing at night
- Landscaped areas between residences and the station
  - Reduce noise
  - Limit visibility from the residences to the station
- The design should take into account future densification



# Additional Suggestions to the Design Criteria



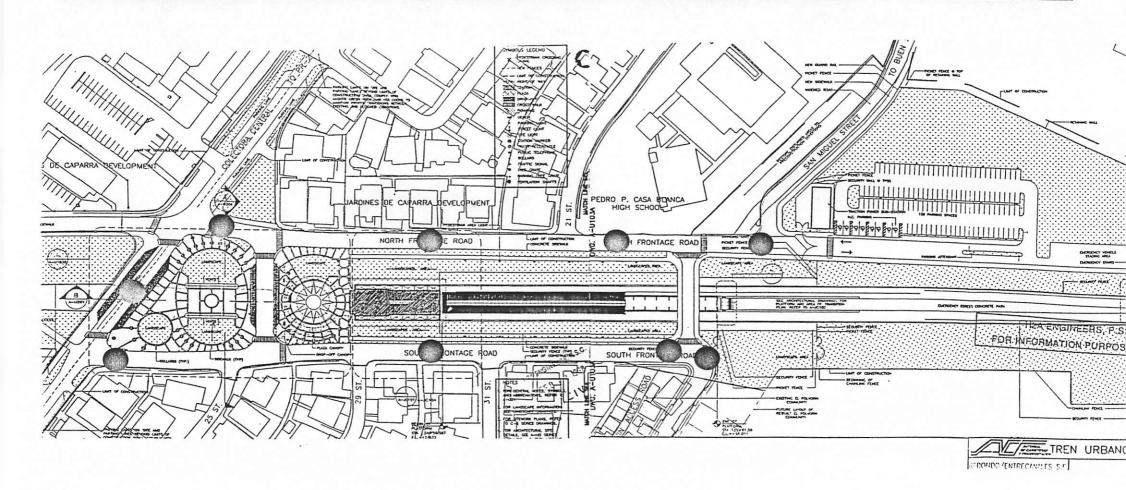

- Sidewalks shall provide:
  - Safety
  - Accessibility (also for handicapped people)
  - Direct routes
  - Visibility
  - Good illumination
  - Comfort
- Traffic Calming measures
  - Must not create a considerable increase of noise in the area
    - Avoid acceleration and deceleration
    - Consider the material
  - Sufficient and good signs





### Implementation of Traffic Calming




V Encuentro UPR/MIT sobre el Tren Urbano

January 7 - 15, 1999



# Location of Traffic Calming Devices







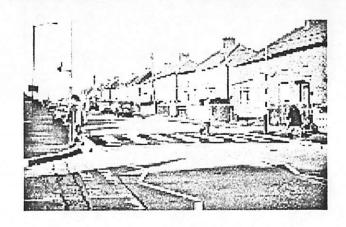
### Suggested Implementation Colectora Central

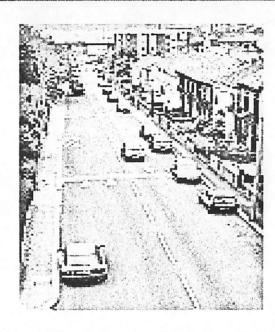


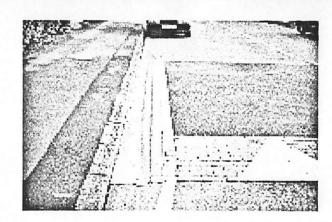
#### Signs

- Speed limit
- Proximity of the station
- Pedestrians presence
- Thermoplastic paint ahead of the median
- Pedestrian Refuge or a median
  - Can cause a speed reduction
  - Pedestrian's safety
    - People cross one direction at a time
- Paved zone







January 7 - 15, 1999

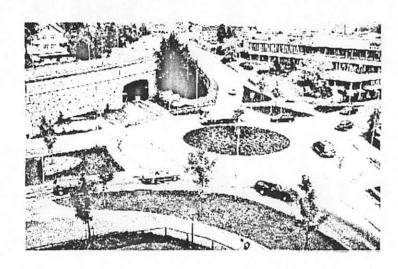


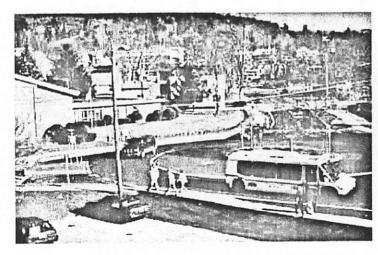

### Suggested Implementation Marginal Norte and Marginal Sur

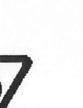










- Signs
- 3 Flat-top humps on each marginal
  - 50 mm high and ramps marked with arrows
  - Reduce speed
  - Used as crosswalks




# Suggested Implementation Bridge









- Localize the bridge toward the east
  - Align San Miguel Street with the principal street of the new development
  - 2 Roundabouts at the intersections with the Marginal Norte and Marginal Sur
    - Elevated
    - Landscaping
    - Signs
- Good illumination







- The purpose of traffic calming in Jardines de Caparra is to reduce speed, not traffic
- Traffic calming is a good option
  - to increase pedestrian's safety
  - to create a more comfortable environment around the station
- Many small measures around the station would be more effective than just controlling the velocity in the front





### Recommendations

- Techniques applied in the Colectora Central or in the front of the station must not affect the bus and emergency services.
- There must be a good illumination
- Sidewalks shall be sufficiently separated from the road in order to provide safety to pedestrians
- Consider different designs and choose the one that fulfill the objectives of the project in a cost effective way.





### Acknowledgements

- Dr. Nelson Irizarry
- Mr. Mucho Than
- Ms. Rosana Correa
- Ms. Lydia Mercado
- Mr. Kenneth Kruckemeyer





### Future Work

- Complete the literature review of traffic calming around train and bus stations
- Complete the suggested design of traffic calming in Jardines de Caparra
- Feasibility analysis of the design suggested



### References



The Solution To Urban Traffic and a New Vision for Neighborhood Livability. Citizens Advocating Responsible Transportation, CART(1989), Sensible Transportation Options for People, STOP(1993). Australia

*Traffic Calming in Practice.* County Surveyors Society, Department of Transport, (1994). London *Traffic Calming.* Ewing, R., Kooshian, C., (August, 1997)., ITE Journal

Modern Roundabouts and Traffic Crash Experience in the United States. Flannery, A., Datta, T.K., (1996). Paper No.960658, FHWA/Wayne State University, Michigan.

Traffic Calming. Genesis Group, (1997)

Calmar el tráfico. Sanz, A., (1998). Ministerio de Fomento. Centro de Publicaciones, Madrid, España.

Neighborhood Traffic Calming: Background, Purpose, and Benefits. ITE. Special Project 208

Urban Form and Pedestrian Choices: A Study of Austin Neighborhoods. Handy, S.L., (December, 1995). University of Texas at Austin.

Residential Traffic Calming Devices. Montgomery County, Maryland Department of public Works and Transportation.

Final Environmental Impact Statement: Executive Summary. USDOT, FTA, DTOP, HTA of Puerto Rico, (November, 1995). Tren Urbano, San Juan, Puerto Rico.



# TREN URBANO



# Techniques for Prediction of Ground-Borne Vibrations Caused by Subway Trains

By: Tomás Montalvo Torres Academic Advisor: Dr. Luis E. Suárez



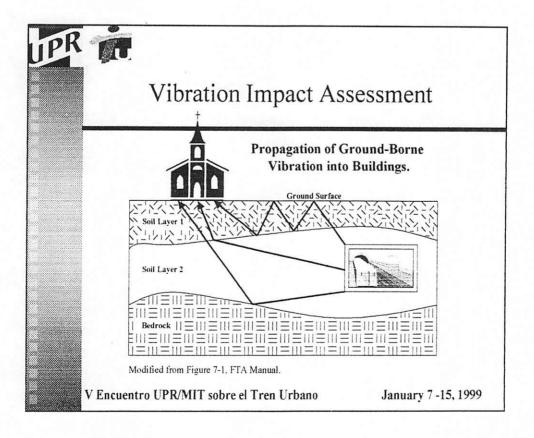
#### Objective

■ Develop the required techniques and to carry out a rigorous analysis of the vibrations induced in neighboring structures by the propagation of waves caused by a train running through an underground tunnel.



V Encuentro UPR/MIT sobre el Tren Urbano

January 7-15, 1999




#### Analysis Procedure

- The commercial all-purpose FE program ANSYS will be used for discretization of the geometry and a numerical integration algorithm to calculate the displacements and velocities induced by the vibration waves.
- The soil deposit surrounded the tunnel, the tunnel itself, and the foundation of the structures in the vicinity will be modeled using a 2/D finite element model.

V Encuentro UPR/MIT sobre el Tren Urbano

January 7 -15, 1999





## Factors that Influence the Level of Ground-Borne Vibration

- Factors Related to the Vibration Source
  - ◆ Train Speed
  - ◆ Transit Structure (tunnel)
  - ◆ Depth of Vibration Source
  - ◆ Track Support System
  - ♦ Track/Roadway Surface

V Encuentro UPR/MIT sobre el Tren Urbano

January 7-15, 1999



# Factors that Influence the Level of Ground-Borne Vibration

- Factors Related to the Vibration Path
  - ◆ Soil Type
  - ♦ Distance to bedrock
  - ◆ Soil Layering
  - ◆ Depth to Water Table

V Encuentro UPR/MIT sobre el Tren Urbano

January 7 -15, 1999



# Factors that Influence Level of Ground-Borne Vibration

- Factors Related to the Vibration Receiver
  - ◆ Foundation Type
  - ◆ Type of Building
  - ◆ Acoustical Absorption

V Encuentro UPR/MIT sobre el Tren Urbano

January 7 -15, 1999



#### Ground-Borne Vibration Impact Criteria

| Land Use Category                                                                | Groud Borne Vibration |
|----------------------------------------------------------------------------------|-----------------------|
| CAT.1 Building where low ambient vibration is essential for interior operations. | 65 VdB                |
| CAT. 2 Residences and buildings where people normally sleep.                     | 72 VdB                |
| CAT. 3 Institutional land uses with primarily daytime use.                       | 75 VdB                |
| VdB re 1 micro inch sec.                                                         |                       |
| ncuentro UPR/MIT sobre el Tren Urbano                                            | January 7 -15, 1999   |



#### Soil Type Found in the Tren Urbano Corridor

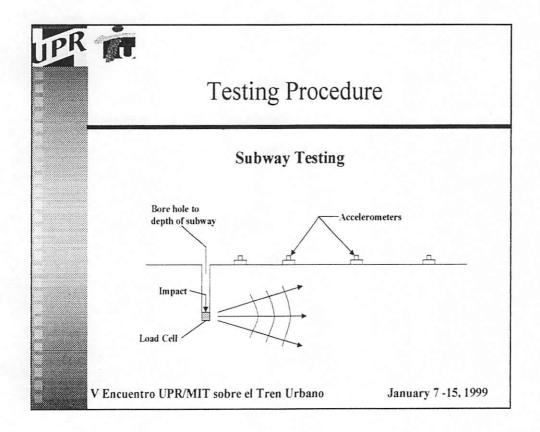
| Name                    | Symbol | Description                                                       |
|-------------------------|--------|-------------------------------------------------------------------|
| Artificial Fill         | Af     | Wet organic soil under mixed rock fill, depth 5 m.                |
| Recent Alluvium         | Qa     | Organic soil, sand, clay creek deposits, depth 20 m. water 2-6 m. |
| Alluvial Fan Deposits   | Qf     | Silty and sandy clays, water 2-6 m.                               |
| Older Alluvium          | Qtt    | Stiff silty and sandy clays, water 2-6 m.                         |
| Mucarabones Sand        | Tm     | Coarse quartz sand                                                |
| San Sebastian Formation | Ts     | Sandy clay with small rocks , water 5-6 m.                        |
| Río Piedras Siltstone   | Tr     | Layers of claystone and sandstone                                 |

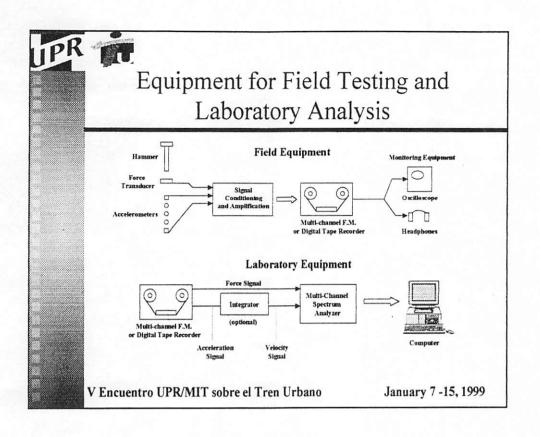


#### Vibration-Sensitive Locations Within 150 Meters of Tren Urbano Alignment (STA 219-232)

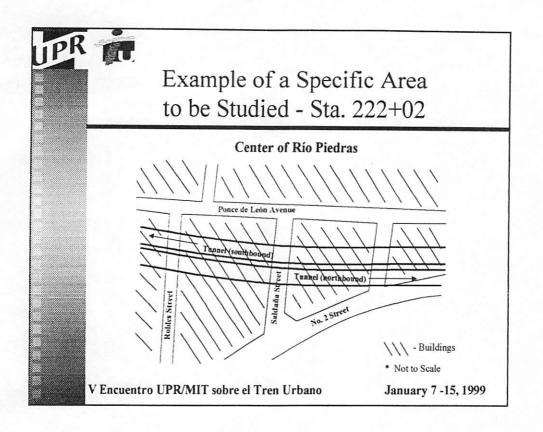
| Station No. / Side | Vibration Sensitive Locations            | Vibration Cat. /<br>Soil Type |
|--------------------|------------------------------------------|-------------------------------|
| 219-220 / E        | Residences along<br>Ponce de León Avenue | 2 / Qa                        |
| 220-221 / E        | Church, Plaza-Rio Piedras                | 3 / Qa                        |
| 223-226 / E        | University of Puerto Rico                | 3 / Qa                        |
| 229-232 / W        | Residences in Rio Piedras                | 2 / Qtt                       |

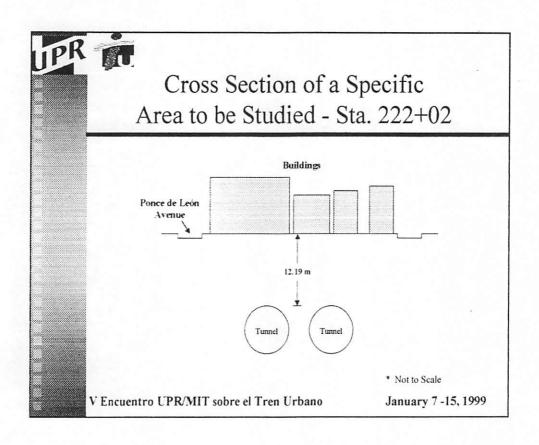
V Encuentro UPR/MIT sobre el Tren Urbano January 7-15, 1999



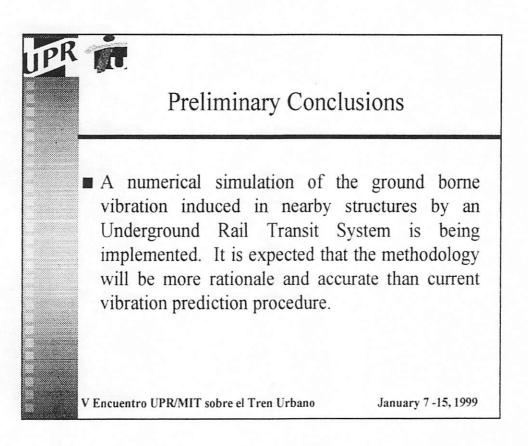


#### Detailed Vibration Analysis

- Survey of Existing Vibration
- Predict Future Vibration and Vibration Impact
- Develop Mitigation Measures


V Encuentro UPR/MIT sobre el Tren Urbano


January 7 -15, 1999






| Tream                                            | ica vic                          | nation           | Level            | s in Su                                                                  | Uway                                  |
|--------------------------------------------------|----------------------------------|------------------|------------------|--------------------------------------------------------------------------|---------------------------------------|
| Area<br>(Subway)                                 | Nearest<br>Sensitive<br>Receiver | Type of<br>Track | Speed<br>(Km/hr) | Interior<br>Vibration<br>Level<br>Without/<br>With<br>Crossover<br>(VdB) | Impact<br>Without<br>With<br>Crossove |
| Río Piedras<br>/ University<br>of Puerto<br>Rico | 209+54 to<br>229+50 / 5<br>(est) | Subway           | 45               | 75 / 85                                                                  | Yes / Ye                              |





#### Elevation of the Soil Layers Sta. 222+02 Elevation G.W.T. @ 4.57 m Clay with sand. 7.01 m Elastic silt, few sand. Medium sand, some clay Lean clay, some sand. Lean clay, some silt. 22.87 m Clay with sand. 25.15 m Organic lean clay. V Encuentro UPR/MIT sobre el Tren Urbano January 7 -15, 1999





#### Contribution of this Work

The methodology and computational tools derived from the project will be useful to implement the detailed analysis required by the Federal Transit Administration when the results of preliminary screenings indicate that safe vibration thresholds are exceeded.

V Encuentro UPR/MIT sobre el Tren Urbano

January 7 -15, 1999



#### Bibliography

- Transit Noise and Vibration Impact Assessment April 1995, Harris Miller Miller & Hanson, MA.
- Noise and Vibration Technical Report December 1995, Harris Miller Miller & Hanson, MA.
- Geotechnical Data Report April 1996, US DOT, FTA and PR DTOP.
- Río Piedras Contract Drawings May 1996, US DOT, FTA and PR DTOP.

V Encuentro UPR/MIT sobre el Tren Urbano

January 7 -15, 1999